
SIGGRAPH 2002 Course 17 Notes

State of the Art in Hardware Shading

Presenters
Marc Olano

Member of Technical Staff
SGI

Chas Boyd
DirectX Graphics
Microsoft Corp.

Bill Mark
NVIDIA Corp.

Michael McCool
Associate Professor
University of Waterloo

Jason L. Mitchell
Project Team Leader
3D Application Research Group
ATI Research

Randi Rost
Senior Manager, Driver Development
3Dlabs, Inc.

Course Description:
In the past couple of years, simple programmable shading capabilities have appeared on a wide range
of graphics hardware. This has sparked great interest across the spectrum of developers, from games to
visualization, including several SIGGRAPH papers on using the new features. While the capabilities
are similar, there are significant differences in the methods provided program the shading hardware
and the interface with an application program. This course provides a practical comparison between
hardware shading alternatives and shading APIs. Different platforms are compared using a series of
common examples, with tutorial-level details and live demos on each platform.

Prerequisites:
This course assumes working knowledge of a modern real-time graphics API like OpenGL or DirectX.
The participants are also assumed to be familiar with the concepts of procedural shading.

Syllabus
I. Shading Hardware

A. Introduction (Olano - 30 min)
1. Why do we want real-time procedural shading?
2. Shading hardware issues
3. Overview of common examples for all presenters

a. Shiny bump map
b. McCool Homomorphic BRDF factorization
c. Parameterized Wood

B. NVIDIA (Bill Mark - 60 min)
1. NVIDIA Shading overview
2. Details on implementing each of the common examples
3. NVIDIA specific examples
4. Demos

C. ATI (Jason L. Mitchell - 60 min)
1. ATI Shading overview (15 min)

break

2. Details on implementing each of the common examples
3. ATI specific examples
4. Demos

D. SGI (Marc Olano - 60 min)
1. SGI OpenGL Shader overview
2. Shading as a library above the API
3. Details on implementing each of the common examples
4. SGI OpenGL Shader specific examples
5. Demos

break

II. APIs
A. DirectX (Chas Boyd - 60 min)

1. How shading fits into DirectX
2. Details on implementing each of the common examples
3. DirectX specific examples
4. Demos

B. OpenGL 2.0 (Randi Rost - 60 min)
1. How shading fits into OpenGL 2.0
2. Details implementing on each of the common examples
3. OpenGL 2.0 specific examples

break

4. Demos (15 min)
C. API design issues (McCool - 60 min)

1. SMASH: A conceptual design for future programmable graphics accelerators
2. Flexible parameter binding mechanism
3. Virtual stack machine shader execution conceptual model
4. Use of metaprogramming techniques in host language

III. Panel-style Q&A (All - 30 min)

Contents
Chapter 1: Introduction

Marc Olano 1 - 1
Chapter 2: NVIDIA

Bill Mark, pointer to more recent material 2 - 1
Mark Kilgard, NV_vertex_program OpenGL Extension Specification 2 - 1

Chapter 3: ATI
Jason L. Mitchell 3 - 1

Chapter 4: SGI
Mark S. Peercy, Marc Olano, John Airey, P. Jeffery Ungar, "Interactive Multi-Pass
Programmable Shading", Proceedings of SIGGRAPH 2000 (New Orleans,
Louisiana, July 23-28, 2000). In Computer Graphics, Annual Conference Series,
ACM SIGGRAPH, 2000.
©1999 ACM, included here by permission.

4 - 1

Marc Olano 4 - 9
Chapter 5: DirectX

Chas Boyd, "Hardware Shading with Direct3D" 5 - 1
Philip Taylor, "Per-Pixel Lighting" 5 - 1

Chapter 6: OpenGL 2.0
Randi Rost 6 - 1

Chapter 7: API Design
Michael McCool, Qin Zheng and Tiberiu Popa, "SMASH Metaprogramming Shader
API"

7 - 1

Chapter 1

Introduction
Marc Olano

1 About This Course
Or, “why do we want to do real-time shading, and why offer a course on it?”

Over the years of graphics hardware development, there have been obvious strides
in the geometric complexity of objects that can be rendered in real-time. The first
statistic quoted for any new piece of graphics hardware is the number of polygons it
can render per second. However, there has also been a steady pace of improvement in
appearance for objects rendered in real-time (Figure 1). These improvements are harder
to benchmark and tend to come in jumps across the industry. Nonetheless, no one today
would seriously consider buy a new graphics system that did only flat shading only.

Compare this to software rendering, where techniques like procedural shading have
been in use for 15-20 years [3, 5, 8, 10]. Procedural shading is popular in a large part
because of the power it provides to customize the appearance of everything you render
by changing the procedures that control that appearance.

In the past few years, we’ve begun to see graphics hardware that can do some form
of procedural shading in real-time. This new freedom in expressing the appearance of
rendered objects has excited the imagination of people across the spectrum of interac-
tive graphics users, including everyone from game developers to car designers.

However, the capabilities and ease of use of new real-time shading hardware varies
widely. This course is designed to provide a solid comparison of many of the latest
offerings. Even as we offer this course, hardware capabilities and software interfaces
for them are improving. Any attempt to show the “state of the art”, is at best a snapshot.
As such, these notes will be but one snapshot, and the course presentations another.
While the notes may serve as a starting point, we encourage you to check the web sites
of the various course presenters for the latest developments at and after SIGGRAPH.

Figure 1: Progression of hardware-accelerated appearance: vector, flat shading,
Gouraud shading, 2D Texture + Gouraud shading, 2D Texture + per-vertex Phong,
3D Procedural Shader

1-1

The course itself is divided into two major sections. The morning presenters (Bill
Mark from NVIDIA, Jason Mitchell from ATI and Marc Olano from SGI) will focus
on the how the shaders that determine surface appearance are described. The after-
noon presenters (Chas Boyd from Microsoft on DirectX, Randi Rost from 3DLabs on
OpenGL 2.0 and Michael McCool from the University of Waterloo on API Design and
SMASH) will focus on API issues. That is, on the interface for using shaders and
shaded objects within an application.

2 The Examples
To provide a common ground for comparison, each presenter in both sections will
show three common examples on their latest and greatest system. These will be sup-
plemented by their additional examples for each presenter to show off other important
features of their system.

The common examples are not so much a benchmark of performance as a bench-
mark of ease of use and understanding. By using the same set of examples, course
participants will be able to compare the different hardware and software interfaces. On
the other hand, we haven’t attempted to define the examples too precisely since each
system has its strengths and weaknesses. If we’d defined every detail of the examples,
we’d run the danger of giving a false comparison by the chance overlap with strengths
for some systems and weaknesses for others. Instead, the examples are more roughly
defined, giving each presenter the option to target their strengths — they way you’d do
it if you were writing the shaders.

Note that not all chapters in these notes show implementation of the examples —
in some cases major changes are expected between the course notes deadline and SIG-
GRAPH. In those cases, these notes include reference material that may continue to
prove useful for those platforms.

The following sections describe each of the three common examples, including the
problem statement given to the presenters at the outset of the course.

2.1 Shiny Bump Map

Environment mapped bump mapping ... dependent texturing, ev-
erybody seems to like it

The first example combines environment mapping, a common technique for sim-
ulating reflection, with bump mapping, a common technique for simulating fine-scale
surface features through shading without changing the surface geometry. These two are
interesting when put together since both bump map and environment map are results
of texturing operations. Put together, they require the results of one texture lookup to
influence the texture coordinates used in a second lookup.

It’s also included because bumpy-shiny things have become a trite examples on
recent graphics hardware, being applied to practically every object in some cases.

The problem statement intentionally avoids specifying exactly how the bump map
is computed. The traditional formulation originally proposed by Blinn uses a bump

1-2

Figure 2: Shiny Bump Map on a low-tessellation torus

1-3

Figure 3: Car rendered with Homomorphic BRDF factorization for paint from [7], and
again with environment-map based Fresnel reflectance layer on top of BRDF-based
paint

texture representing a grey-scale height map of the surface [1]. Changes to the shading
normal are determined from the gradients of this bump map texture. Another for-
mulations by Cabral, subtracts shifted versions of the texture in a technique similar
to 3D image embossing to compute the bump gradients [2]. Yet another formulation
by Fournier uses a texture map containing surface normals (a normal map) instead of
computing perturbations to the original shading normals [4]. Any of these or other
method of computing the bumped surface normals could be used. Also, the shader
could compute some other related quantity rather than the bumped normal if it seems
more efficient.

The problem statement also avoids specifying how the environment map is stored.
Once again, there are many options that may make more or less sense for certain imple-
mentations. All systems in this course can represent environment maps in sphere map
form, as an image of a reflective sphere. Some can also use cube map form, mapping
reflection vectors onto the faces of a cube, or parabolic map form, as images of two
reflective paraboloids [6].

2.2 Homomorphic BRDF Factorization

non-standard texgen, realistic surfaces
texture("p",V) * texture("q",H) * texture("p",L)
* diffuse * color

This is the run-time aspect of McCool, Ang and Ahmad’s 2001 SIGGRAPH pa-
per [7]. The bulk of this paper dealt with numerical factorization of arbitrary bidirec-
tional reflectance distribution functions (BRDFs) into combinations of 2D textures.

A BRDF is a 4D function that encodes the reflectance of a surface based on both
the direction of view (V = 2 dimensions) and the incoming light direction (L = 2 dimen-
sions). Equipment exists to measure the BRDF of a real surfaces, typically at a large
number of discrete locations for both light and view directions. Given this BRDF, we

1-4

Figure 4: Scan of wood

can create realistic renderings of many surfaces. However, the nature of the BRDF as
a 4D function prevent its direct use for real-time rendering.

The homomorphic factorization method computes a least-squares fit to a full 4D
BRDF by a product of 2D textures, each with a unique set of texture coordinates de-
pendent on both V and L. The method doesn’t constrain the choice of texture coordi-
nates for each 2D texture, but good results were obtained in the original paper using
one texture lookup indexed by V , one indexed by L (actually the same texture used over
again) and one indexed by H = V +L, all expressed in the local tangent coordinates.
This set of textures makes some physical sense relative to “microfacet” BRDF mod-
els that model the surface as a distribution of microscopic perfectly reflective facets.
The H texture can be interpreted as the probability any microfacet will have the given
orientation, H. The V and L textures can be interpreted as shadowing and masking of
some microfacets by other facets.

This is a good choice for an example since it requires non-standard texture coordi-
nate generation (and hence application or vertex-level computation). It also gives more
realistic appearance than is typically seen in real-time rendering, even on systems with
full shading support.

2.3 Procedural Wood
Should be able to morph between 3D versions of the different
wood samples in [Figure 4]. ...a good basis is the wood shader
in The RenderMan Companion [9]. It should be parameterized
for dark and light bands (color, width and transition) and also
different fine grain in the dark and light bands (color, frequency
and specularity). I’ll try to get a better scan to show the last
effect – there is a variation in the specular highlight intensity that
correlates well with the fine grain of some of the wood.
Since it should be parameterized for all of these things, a simple
3D wood texture won’t cut it, but feel free to use 1D, 2D or 3D
textures for other things if it makes it easier.

This example is intended to be more complex than the typical real-time shader

1-5

(though not as complex as some of the 1000-line shaders used in software rendering).
A single wood shader, with a great degree of parameterization, should give all of us a
reasonable challenge in comparison to the relative simplicity of the first example.

References
[1] BLINN, J. F., AND NEWELL, M. E. Texture and reflection in computer generated

images. Communications of the ACM 19 (1976), 542–546.

[2] CABRAL, B. K., PEERCY, M. S., AND AIREY, J. M. Method, system, and com-
puter program product for bump mapping in tangent space. US Patent 5,949,424,
1999.

[3] COOK, R. L. Shade trees. In Proc. ACM SIGGRAPH (July 1984), pp. 223–231.

[4] FOURNIER, A. Normal distribution functions and multiple surfaces. In Graphics
Interface ’92 Workshop on Local Illumination (May 1992), pp. 45–52.

[5] HANRAHAN, P., AND LAWSON, J. A language for shading and lighting cal-
culations. In Computer Graphics (SIGGRAPH ’90 Proceedings) (Aug. 1990),
pp. 289–298.

[6] HEIDRICH, W., AND SEIDEL, H.-P. View-independent environment maps. In
Eurographics/SIGGRAPH Workshop on Graphics Hardware (1998), pp. 39–45.

[7] MCCOOL, M. D., ANG, J., AND AHMAD, A. Homomorphic factorization of
brdfs for high-performance rendering. In Proc. ACM SIGGRAPH (Aug. 2001).

[8] PERLIN, K. An image synthesizer. vol. 19, pp. 287–296.

[9] UPSTILL, S. The RenderMan companion: A Programmer’s Guide to Realistic
Computer Graphics. Addison-Wesley, 1990.

[10] WHITTED, T., AND WEIMER, D. M. A software testbed for the development of
3D raster graphics systems. ACM Transactions on Graphics 1, 1 (January 1982),
43–57.

1-6

Chapter 2

NVIDIA
Bill Mark

 2-1

State of the Art in Hardware Shading – NVIDIA

SIGGRAPH 2002 Course Notes
William R. Mark

April 4, 2002

Programmable graphics hardware, APIs, and shading languages are evolving towards greater
generality and performance at a rate that is extremely rapid even by the standards of the computer
industry. Because course notes must be prepared almost four months in advance of the
SIGGRAPH conference, we can’t include truly state-of-the-art material in the course notes.
Instead, we will prepare a web site at http://www.nvidia.com/siggraph2002 that will provide
course attendees with material to complement the course presentation.

We are including in these course notes a copy of NVIDIA’s OpenGL extension specification for
the interface to the programmable vertex hardware in the GeForce3 and GeForce4. The
NV_vertex_program extension is similar to assembly- language- level interfaces that will
provide access to the capabilities of future NVIDIA GPUs.

 2-2

Name

 NV_vertex_program

Name Strings

 GL_NV_vertex_program

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' nvidia.com)

Notice

 Copyright NVIDIA Corporation, 2000, 2001, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Version 1.6

Version

 NVIDIA Date: February 25, 2002
 $Date$ $Revision$
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_program.txt#16 $

Number

 233

Dependencies

 Written based on the wording of the OpenGL 1.2.1 specification and
 requires OpenGL 1.2.1.

 Requires support for the ARB_multitexture extension with at least
 two texture units.

 EXT_point_parameters affects the definition of this extension.

 EXT_secondary_color affects the definition of this extension.

 EXT_fog_coord affects the definition of this extension.

 EXT_vertex_weighting affects the definition of this extension.

 ARB_imaging affects the definition of this extension.

Overview

 Unextended OpenGL mandates a certain set of configurable per-vertex
 computations defining vertex transformation, texture coordinate
 generation and transformation, and lighting. Several extensions
 have added further per-vertex computations to OpenGL. For example,
 extensions have defined new texture coordinate generation modes
 (ARB_texture_cube_map, NV_texgen_reflection, NV_texgen_emboss), new
 vertex transformation modes (EXT_vertex_weighting), new lighting modes
 (OpenGL 1.2's separate specular and rescale normal functionality),
 several modes for fog distance generation (NV_fog_distance), and

 2-3

 eye-distance point size attenuation (EXT_point_parameters).

 Each such extension adds a small set of relatively inflexible
 per-vertex computations.

 This inflexibility is in contrast to the typical flexibility provided
 by the underlying programmable floating point engines (whether
 micro-coded vertex engines, DSPs, or CPUs) that are traditionally used
 to implement OpenGL's per-vertex computations. The purpose of this
 extension is to expose to the OpenGL application writer a significant
 degree of per-vertex programmability for computing vertex parameters.

 For the purposes of discussing this extension, a vertex program is
 a sequence of floating-point 4-component vector operations that
 determines how a set of program parameters (defined outside of
 OpenGL's begin/end pair) and an input set of per-vertex parameters
 are transformed to a set of per-vertex output parameters.

 The per-vertex computations for standard OpenGL given a particular
 set of lighting and texture coordinate generation modes (along with
 any state for extensions defining per-vertex computations) is, in
 essence, a vertex program. However, the sequence of operations is
 defined implicitly by the current OpenGL state settings rather than
 defined explicitly as a sequence of instructions.

 This extension provides an explicit mechanism for defining vertex
 program instruction sequences for application-defined vertex programs.
 In order to define such vertex programs, this extension defines
 a vertex programming model including a floating-point 4-component
 vector instruction set and a relatively large set of floating-point
 4-component registers.

 The extension's vertex programming model is designed for efficient
 hardware implementation and to support a wide variety of vertex
 programs. By design, the entire set of existing vertex programs
 defined by existing OpenGL per-vertex computation extensions can be
 implemented using the extension's vertex programming model.

Issues

 What should this extension be called?

 RESOLUTION: NV_vertex_program. DirectX 8 refers to its similar
 functionality as "vertex shaders". This is a confusing term
 because shaders are usually assumed to operate at the fragment or
 pixel level, not the vertex level.

 Conceptually, what the extension defines is an application-defined
 program (admittedly limited by its sequential execution model) for
 processing vertices so the "vertex program" term is more accurate.

 Additionally, some of the API machinery in this extension for
 describing programs could be useful for extending other OpenGL
 operations with programs (though other types of programs would
 likely look very different from vertex programs).

 What terms are important to this specification?

 vertex program mode - when vertex program mode is enabled, vertices
 are transformed by an application-defined vertex program.

 conventional GL vertex transform mode - when vertex program mode
 is disabled (or the extension is not supported), vertices are

 2-4

 transformed by GL's conventional texgen, lighting, and transform
 state.

 provoke - the verb that denotes the beginning of vertex
 transformation by either vertex program mode or conventional GL
 vertex transform mode. Vertices are provoked when either glVertex
 or glVertexAttribNV(0, ...) is called.

 program target - a type or class of program. This extension
 supports two program targets: the vertex program and the vertex
 state program. Future extensions could add other program targets.

 vertex program - an application-defined vertex program used to
 transform vertices when vertex program mode is enabled.

 vertex state program - a program similar to a vertex program.
 Unlike a vertex program, a vertex state program runs outside of
 a glBegin/glEnd pair. Vertex state programs do not transform
 a vertex. They just update program parameters.

 vertex attribute - one of 16 4-component per-vertex parameters
 defined by this extension. These attributes alias with the
 conventional per-vertex parameters.

 per-vertex parameter - a vertex attribute or a conventional
 per-vertex parameter such as set by glNormal3f or glColor3f.

 program parameter - one of 96 4-component registers available
 to vertex programs. The state of these registers is shared
 among all vertex programs.

 What part of OpenGL do vertex programs specifically bypass?

 Vertex programs bypass the following OpenGL functionality:

 o Normal transformation and normalization

 o Color material

 o Per-vertex lighting

 o Texture coordinate generation

 o The texture matrix

 o The normalization of AUTO_NORMAL evaluated normals

 o The modelview and projection matrix transforms

 o The per-vertex processing in EXT_point_parameters

 o The per-vertex processing in NV_fog_distance

 o Raster position transformation

 o Client-defined clip planes

 Operations not subsumed by vertex programs

 o The view frustum clip

 o Perspective divide (division by w)

 2-5

 o The viewport transformation

 o The depth range transformation

 o Clamping the primary and secondary color to [0,1]

 o Primitive assembly and subsequent operations

 o Evaluator (except the AUTO_NORMAL normalization)

 How specific should this specification be about precision?

 RESOLUTION: Reasonable precision requirements are incorporated
 into the specification beyond the often vague requirements of the
 core OpenGL specification.

 This extension essentially defines an instruction set and its
 corresponding execution environment. The instruction set specified
 may find applications beyond the traditional purposes of 3D vertex
 transformation, lighting, and texture coordinate generation that
 have fairly lax precision requirements. To facilitate such
 possibly unexpected applications of this functionality, minimum
 precision requirements are specified.

 The minimum precision requirements in the specification are meant
 to serve as a baseline so that application developers can write
 vertex programs with minimal worries about precision issues.

 What about when the "execution environment" involves support for
 other extensions?

 This extension assumes support for functionality that includes
 a fog distance, secondary color, point parameters, and multiple
 texture coordinates.

 There is a trade-off between requiring support for these extensions
 to guarantee a particular extended execution environment and
 requiring lots of functionality that everyone might not support.

 Application developers will desire a high baseline of functionality
 so that OpenGL applications using vertex programs can work in
 the full context of OpenGL. But if too much is required, the
 implementation burden mandated by the extension may limit the
 number of available implementations.

 Clearly we do not want to require support for 8 texture units
 even if the machinery is there for it. Still multitexture is a
 common and important feature for using vertex programs effectively.
 Requiring at least two texture units seems reasonable.

 What do we say about the alpha component of the secondary color?

 RESOLUTION: When vertex program mode is enabled, the alpha
 component of csec used for the color sum state is assumed always
 zero. Another downstream extension may actually make the alpha
 component written into the COL1 (or BFC1) vertex result register
 available.

 Should client-defined clip planes operate when vertex program mode is
 enabled?

 RESOLUTION. No.

 2-6

 OpenGL's client-defined clip planes are specified in eye-space.
 Vertex programs generate homogeneous clip space positions.
 Unlike the conventional OpenGL vertex transformation mode, vertex
 program mode requires no semantic equivalent to eye-space.

 Applications that require client-defined clip planes can simulate
 OpenGL-style client-defined clip planes by generating texture
 coordinates and using alpha testing or other per-fragment tests
 such as NV_texture_shader's CULL_FRAGMENT_NV program to discard
 fragments. In many ways, these schemes provide a more flexible
 mechanism for clipping than client-defined clip planes.

 Unfortunately, vertex programs used in conjunction with selection
 or feedback will not have a means to support client-defined clip
 planes because the per-fragment culling mechanisms described in the
 previous paragraph are not available in the selection or feedback
 render modes. Oh well.

 Finally, as a practical concern, client-defined clip planes
 greatly complicate clipping for various hardware rasterization
 architectures.

 How are edge flags handled?

 RESOLUTION: Passed through without the ability to be modified by
 a vertex program. Applications are free to send edge flags when
 vertex program mode is enabled.

 Should vertex attributes alias with conventional per-vertex
 parameters?

 RESOLUTION. YES.

 This aliasing should make it easy to use vertex programs with
 existing OpenGL code that transfers per-vertex parameters using
 conventional OpenGL per-vertex calls.

 It also minimizes the number of per-vertex parameters that the
 hardware must maintain.

 See Table X.2 for the aliasing of vertex attributes and conventional
 per-vertex parameters.

 How should vertex attribute arrays interact with conventional vertex
 arrays?

 RESOLUTION: When vertex program mode is enabled, a particular
 vertex attribute array will be used if enabled, but if disabled,
 and the corresponding aliased conventional vertex array is enabled
 (assuming that there is a corresponding aliased conventional vertex
 array for the particular vertex array), the conventional vertex
 array will be used.

 This matches the way immediate mode per-vertex parameter aliasing
 works.

 This does slightly complicate vertex array validation in program
 mode, but programmers using vertex arrays can simply enable vertex
 program mode without reconfiguring their conventional vertex arrays
 and get what they expect.

 Note that this does create an asymmetry between immediate mode
 and vertex arrays depending on whether vertex program mode is

 2-7

 enabled or not. The immediate mode vertex attribute commands
 operate unchanged whether vertex program mode is enabled or not.
 However the vertex attribute vertex arrays are used only when
 vertex program mode is enabled.

 Supporting vertex attribute vertex arrays when vertex program mode
 is disabled would create a large implementation burden for existing
 OpenGL implementations that have heavily optimized conventional
 vertex arrays. For example, the normal array can be assumed to
 always contain 3 and only 3 components in conventional OpenGL
 vertex transform mode, but may contain 1, 2, 3, or 4 components
 in vertex program mode.

 There is not any additional functionality gained by supporting
 vertex attribute arrays when vertex program mode is disabled, but
 there is lots of implementation overhead. In any case, it does not
 seem something worth encouraging so it is simply not supported.
 So vertex attribute arrays are IGNORED when vertex program mode
 is not enabled.

 Ignoring VertexAttribute commands or treating VertexAttribute
 commands as an error when vertex program mode is enabled
 would likely add overhead for such a conditional check. The
 implementation overhead for supporting VertexAttribute commands
 when vertex program mode is disabled is not that significant.
 Additionally, it is likely that setting persistent vertex attribute
 state while vertex program mode is disabled may be useful to
 applications. So vertex attribute immediate mode commands are
 PERMITTED when vertex program mode is not enabled.

 Colors and normals specified as ints, uints, shorts, ushorts, bytes,
 and ubytes are converted to floating-point ranges when supplied to
 core OpenGL as described in Table 2.6. Other per-vertex attributes
 such as texture coordinates and positions are not converted.
 How does this mix with vertex programs where all vertex attributes
 are supposedly treated identically?

 RESOLUTION: Vertex attributes specified as bytes and ubytes are
 always converted as described in Table 2.6. All other formats are
 not converted according to Table 2.6 but simply converted directly
 to floating-point.

 The ubyte type is converted because those types seem more useful
 for passing colors in the [0,1] range.

 If an application desires a conversion, the conversion can be
 incorporated into the vertex program itself.

 This also applies to vertex attribute arrays. However, by enabling
 a color or normal vertex array and not enabling the corresponding
 aliased vertex attribute array, programmers can get the conventional
 conversions for color and normal arrays (but only for the vertex
 attribute arrays that alias to the conventional color and normal
 arrays and only with the sizes/types supported by these color and
 normal arrays).

 Should programs be C-style null-terminated strings?

 RESOLUTION: No. Programs should be specified as an array of
 GLubyte with an explicit length parameter. OpenGL has no precedent
 for passing null-terminated strings into the API (though glGetString
 returns null-terminated strings). Null-terminated strings are
 problematic for some languages.

 2-8

 Should all existing OpenGL transform functionality and extensions
 be implementable as vertex programs?

 RESOLUTION: Yes. Vertex programs should be a complete superset
 of what you can do with OpenGL 1.2 and existing vertex transform
 extensions.

 To implement EXT_point_parameters, the
 GL_VERTEX_PROGRAM_POINT_SIZE_NV enable is introduced.

 To implement two-sided lighting, the GL_VERTEX_PROGRAM_TWO_SIDE_NV
 enable is introduced.

 How does glPointSize work with vertex programs?

 RESOLUTION: If GL_VERTEX_PROGRAM_POINT_SIZE_NV is disabled, the size
 of points is determine by the glPointSize state. If enabled,
 the point size is determined per-vertex by the clamped value of
 the vertex result PSIZ register.

 Can the currently bound vertex program object name be deleted or
 reloaded?

 RESOLUTION. Yes. When a vertex program object name is deleted
 or reloaded when it is the currently bound vertex program object,
 it is as if a rebind occurs after the deletion or reload.

 In the case of a reload, the new vertex program object will be
 used from then on. In the case of a deletion, the current vertex
 program object will be treated as if it is nonexistent.

 Should program objects have a mechanism for managing program
 residency?

 RESOLUTION: Yes. Vertex program instruction memory is a limited
 hardware resource. glBindProgramNV will be faster if binding to
 a resident program. Applications are likely to want to quickly
 switch between a small collection of programs.

 glAreProgramsResidentNV allows the residency status of a
 group of programs to be queried. This mimics
 glAreTexturesResident.

 Instead of adopting the glPrioritizeTextures mechanism, a new
 glRequestResidentProgramsNV command is specified instead.
 Assigning priorities to textures has always been a problematic
 endeavor and few OpenGL implementations implemented it effectively.
 For the priority mechanism to work well, it requires the client
 to routinely update the priorities of textures.

 The glRequestResidentProgramsNV indicates to the GL that a
 set of programs are intended for use together. Because all
 the programs are requesting residency as a group, drivers
 should be able to attempt to load all the requested programs
 at once (and remove from residency programs not in the group if
 necessary). Clients can use glAreProgramsResidentNV to query the
 relative success of the request.

 glRequestResidentProgramsNV should be superior to loading programs
 on-demand because fragmentation can be avoided.

 What happens when you execute a nonexistent or invalid program?

 2-9

 RESOLUTION: glBegin will fail with a GL_INVALID_OPERATION if the
 currently bound vertex program is nonexistent or invalid. The same
 applies to glRasterPos and any command that implies a glBegin.

 Because the glVertex and glVertexAttribNV(0, ...) are ignored
 outside of a glBegin/glEnd pair (without generating an error) it
 is impossible to provoke a vertex program if the current vertex
 program is nonexistent or invalid. Other per-vertex parameters
 (for examples those set by glColor, glNormal, and glVertexAttribNV
 when the attribute number is not zero) are recorded since they
 are legal outside of a glBegin/glEnd.

 For vertex state programs, the problem is simpler because
 glExecuteProgramNV can immediately fail with a GL_INVALID_OPERATION
 when the named vertex state program is nonexistent or invalid.

 What happens when a matrix has been tracked into a set of program
 parameters, but then glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, addr,
 GL_NONE, GL_IDENTITY_NV) is performed?

 RESOLUTION: The specified program parameters stop tracking a
 matrix, but they retain the values of the matrix they were last
 tracking.

 Can rows of tracked matrices be queried by querying the program
 parameters that track them?

 RESOLUTION: Yes.

 Discussing matrices is confusing because of row-major versus
 column-major issues. Can you give an example of how a matrix is
 tracked?

 GLfloat matrix[16] = { 1, 5, 9, 13,
 2, 6, 10, 14,
 3, 7, 11, 15,
 4, 8, 12, 16 };
 GLfloat row1[4], row2[4];

 glMatrixMode(GL_MATRIX0_NV);
 glLoadMatrixf(matrix);
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 4, GL_MATRIX0_NV, GL_IDENTITY_NV);
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 8, GL_MATRIX0_NV, GL_TRANSPOSE_NV);
 glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_NV, 5,
 GL_PROGRAM_PARAMETER_NV, row1);
 /* row1 is now [2 6 10 14] */
 glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_NV, 9,
 GL_PROGRAM_PARAMETER_NV, row2);
 /* row2 is now [5 6 7 8] because the tracked matrix is transposed */

 Should evaluators be extended to evaluate arbitrary vertex
 attributes?

 RESOLUTION: Yes. We'll support 32 new maps (16 for MAP1 and 16
 for MAP2) that take priority over the conventional maps that they
 might alias to (only when vertex program mode is enabled).

 These new maps always evaluate all four components. The rationale
 for this is that if we supported 1, 2, 3, or 4 components, that
 would add 128 (16*4*2) enumerants which is too many. In addition,
 if you wanted to evaluate two 2-component vertex attributes, you
 could instead generate one 4-component vertex attribute and use

 2-10

 the vertex program with swizzling to treat this as two-components.

 Moreover, we are assuming 4-component vector instructions so less
 than 4-component evaluations might not be any more efficient
 than 4-component evaluations. Implementations that use vector
 instructions such as Intel's SSE instructions will be easier to
 implement since they can focus on optimizing just the 4-component
 case.

 How should GL_AUTO_NORMAL work with vertex programs?

 RESOLUTION: GL_AUTO_NORMAL should NOT guarantee that the generated
 analytical normal be normalized. In vertex program mode, the
 current vertex program can easily normalize the normal if required.

 This can lead to greater efficiency if the vertex program transforms
 the normal to another coordinate system such as eye-space with a
 transform that preserves vector length. Then a single normalize
 after transform is more efficient than normalizing after evaluation
 and also normalizing after transform.

 Conceptually, the normalize mandated for AUTO_NORMAL in section
 5.1 is just one of the many transformation operations subsumed by
 vertex programs.

 Should the new vertex program related enables push/pop with
 GL_ENABLE_BIT?

 RESOLUTION: Yes. Pushing and popping enable bits is easy.
 This includes the 32 new evaluator map enable bits. These evaluator
 enable bits are also pushed and popped using GL_EVAL_BIT.

 Should all the vertex attribute state push/pop with GL_CURRENT_BIT?

 RESOLUTION: Yes. The state is aliased with the conventional
 per-vertex parameter state so it really should push/pop.

 Should all the vertex attrib vertex array state push/pop with
 GL_CLIENT_VERTEX_ARRAY_BIT?

 RESOLUTION: Yes.

 Should all the other vertex program-related state push/pop somehow?

 RESOLUTION: No.

 The other vertex program doesn't fit well with the existing bits.
 To be clear, GL_ALL_ATTRIB_BITS does not push/pop vertex program
 state other than enables.

 Should we generate a GL_INVALID_OPERATION operation if updating
 a vertex attribute greater than 15?

 RESOLUTION: Yes.

 The other option would be to mask or modulo the vertex attribute
 index with 16. This is cheap, but it would make it difficult to
 increase the number of vertex attributes in the future.

 If we check for the error, it should be a well predicted branch
 for immediate mode calls. For vertex arrays, the check is only
 required at vertex array specification time.

 2-11

 Hopefully this will encourage people to use vertex arrays over
 immediate mode.

 Should writes to program parameter registers during a vertex program
 be supported?

 RESOLUTION. No.

 Writes to program parameter registers from within a vertex program
 would require the execution of vertex programs to be serialized
 with respect to each other. This would create an unwarranted
 implementation penalty for parallel vertex program execution
 implementations.

 However vertex state programs may write to program parameter
 registers (that is the whole point of vertex state programs).

 Should we support variously sized immediate mode byte and ubyte
 commands? How about for vertex arrays?

 RESOLUTION. Only support the 4ub mode.

 There are simply too many glVertexAttribNV routines. Passing less
 than 4 bytes at a time is inefficient. We expect the main use
 for bytes to be for colors where these will be unsigned bytes.
 So let's just support 4ub mode for bytes. This applies to
 vertex arrays too.

 Should we support integer, unsigned integer, and unsigned short
 formats for vertex attributes?

 RESOLUTION: No. It's just too many immediate mode entry points,
 most of which are not that useful. Signed shorts are supported
 however. We expect signed shorts to be useful for passing compact
 texture coordinates.

 Should we support doubles for vertex attributes?

 RESOLUTION: Yes. Some implementation of the extension might
 support double precision. Lots of math routines output double
 precision.

 Should there be a way to determine where in a loaded program
 string the first parse error occurs?

 RESOLUTION: Yes. You can query PROGRAM_ERROR_POSITION_NV.

 Should program objects be shared among rendering contexts in the
 same manner as display lists and texture objects?

 RESOLUTION: Yes.

 How should this extension interact with color material?

 RESOLUTION: It should not. Color material is a conventional
 OpenGL vertex transform mode. It does not have a place for vertex
 programs. If you want to emulate color material with vertex
 programs, you would simply write a program where the material
 parameters feed from the color vertex attribute.

 Should there be a glMatrixMode or glActiveTextureARB style selector
 for vertex attributes?

 2-12

 RESOLUTION: No. While this would let us reduce a lot of
 enumerants down, it would make programming a hassle in lots
 of cases. Consider having to change the vertex attribute
 mode to enable a set of vertex arrays.

 How should gets for vertex attribute array pointers?

 RESOLUTION: Add new get commands. Using the existing calls
 would require adding 4 sets of 16 enumerants stride, type, size,
 and pointer. That's too many gets.

 Instead add glGetVertexAttribNV and glGetVertexAttribPointervNV.
 glGetVertexAttribNV is also useful for querying the current vertex
 attribute.

 glGet and glGetPointerv will not return vertex attribute array
 pointers.

 Why is the address register numbered and why is it a vector
 register?

 In the future, A0.y and A0.z and A0.w may exist. For this
 extension, only A0.x is useful. Also in the future, there may be
 more than one address register.

 There's a nice consistency in thinking about all the registers
 as 4-component vectors even if the address register has only one
 usable component.

 Should vertex programs and vertex state programs be required to
 have a header token and an end token?

 RESOLUTION: Yes.

 The "!!VP1.0" and "!!VSP1.0" tokens start vertex programs and
 vertex state programs respectively. Both types of programs must
 end with the "END" token.

 The initial header token reminds the programmer what type of program
 they are writing. If vertex programs and vertex state programs are
 ever read from disk files, the header token can serve as a magic
 number for identifying vertex programs and vertex state programs.

 The target type for vertex programs and vertex state programs can be
 distinguished based on their respective grammars independent of the
 initial header tokens, but the initial header tokens will make it
 easier for programmers to distinguish the two program target types.

 We expect programs to often be generated by concatenation of
 program fragments. The "END" token will hopefully reduce bugs
 due to specifying an incorrectly concatenated program.

 It's tempting to make these additional header and end tokens
 optional, but if there is a sanity check value in header and end
 tokens, that value is undermined if the tokens are optional.

 What should be said about rendering invariances?

 RESOLUTION: See the Appendix A additions below.

 The justification for the two rules cited is to support multi-pass
 rendering when using vertex programs. Different rendering passes
 will likely use different programs so there must be some means of

 2-13

 guaranteeing that two different programs can generate particular
 identical vertex results between different passes.

 In practice, this does limit the type of vertex program
 implementations that are possible.

 For example, consider a limited hardware implementation of vertex
 programs that uses a different floating-point implementation
 than the CPU's floating-point implementation. If the limited
 hardware implementation can only run small vertex programs (say
 the hardware provides on 4 temporary registers instead of the
 required 12), the implementation is incorrect and non-conformant
 if programs that only require 4 temporary registers use the vertex
 program hardware, but programs that require more than 4 temporary
 registers are implemented by the CPU.

 This is a very important practical requirement. Consider a
 multi-pass rendering algorithm where one pass uses a vertex program
 that uses only 4 temporary registers, but a different pass uses a
 vertex program that uses 5 temporary registers. If two programs
 have instruction sequences that given the same input state compute
 identical resulting vertex positions, the multi-pass algorithm
 should generate identically positioned primitives for each pass.
 But given the non-conformant vertex program implementation described
 above, this could not be guaranteed.

 This does not mean that schemes for splitting vertex program
 implementations between dedicated hardware and CPUs are impossible.
 If the CPU and dedicated vertex program hardware used IDENTICAL
 floating-point implementations and therefore generated exactly
 identical results, the above described could work.

 While these invariance rules are vital for vertex programs operating
 correctly for multi-pass algorithms, there is no requirement that
 conventional OpenGL vertex transform mode will be invariant with
 vertex program mode. A multi-pass algorithm should not assume
 that one pass using vertex program mode and another pass using
 conventional GL vertex transform mode will generate identically
 positioned primitives.

 Consider that while the conventional OpenGL vertex program mode
 is repeatable with itself, the exact procedure used to transform
 vertices is not specified nor is the procedure's precision
 specified. The GL specification indicates that vertex coordinates
 are transformed by the modelview matrix and then transformed by the
 projection matrix. Some implementations may perform this sequence
 of transformations exactly, but other implementations may transform
 vertex coordinates by the composite of the modelview and projection
 matrices (one matrix transform instead of two matrix transforms
 in sequence). Given this implementation flexibility, there is no
 way for a vertex program author to exactly duplicate the precise
 computations used by the conventional OpenGL vertex transform mode.

 The guidance to OpenGL application programs is clear. If you are
 going to implement multi-pass rendering algorithms that require
 certain invariances between the multiple passes, choose either
 vertex program mode or the conventional OpenGL vertex transform
 mode for your rendering passes, but do not mix the two modes.

 What range of relative addressing offsets should be allowed?

 RESOLUTION: -64 to 63.

 2-14

 Negative offsets are useful for accessing a table centered at zero
 without extra bias instructions. Having the offsets support much
 larger magnitudes just seems to increase the required instruction
 widths. The -64 to 63 range seems like a reasonable compromise.

 When EXT_secondary_color is supported, how does the GL_COLOR_SUM_EXT
 enable affect vertex program mode?

 RESOLUTION: The GL_COLOR_SUM_EXT enable has no affect when vertex
 program mode is enabled.

 When vertex program mode is enabled, the color sum operation is
 always in operation. A program can "avoid" the color sum operation
 by not writing the COL1 (or BFC1 when GL_VERTEX_PROGRAM_TWO_SIDE_NV)
 vertex result registers because the default values of all vertex
 result registers is (0,0,0,1). For the color sum operation,
 the alpha value is always assumed zero. So by not writing the
 secondary color vertex result registers, the program assures that
 zero is added as part of the color sum operation.

 If there is a cost to the color sum operation, OpenGL
 implementations may be smart enough to determine at program bind
 time whether a secondary color vertex result is generated and
 implicitly disable the color sum operation.

 Why must RCP of 1.0 always be 1.0?

 This is important for 3D graphics so that non-projective textures
 and orthogonal projections work as expected. Basically when q or
 w is 1.0, things should work as expected.

 Stronger requirements such as "RCP of -1.0 must always be -1.0"
 are encouraged, but there is no compelling reason to state such
 requirements explicitly as is the case for "RCP of 1.0 must always
 be 1.0".

 What happens when the source scalar value for the ARL instruction
 is an extremely positive or extremely negative floating-point value?
 Is there a problem mapping the value to a constrained integer range?

 RESOLUTION: It is not a problem. Relative addressing can by offset
 by a limited range of offsets (-64 to 63). Relative addressing
 that falls outside of the 0 to 95 range of program parameter
 registers is automatically mapped to (0,0,0,0).

 Clamping the source scalar value for ARL to the range -64 to 160
 inclusive is sufficient to ensure that relative addressing is out
 of range.

 How do you perform a 3-component normalize in three instructions?

 #
 # R1 = (nx,ny,nz)
 #
 # R0.xyz = normalize(R1)
 # R0.w = 1/sqrt(nx*nx + ny*ny + nz*nz)
 #
 DP3 R0.w, R1, R1;
 RSQ R0.w, R0.w;
 MUL R0.xyz, R1, R0.w;

 How do you perform a 3-component cross product in two instructions?

 2-15

 #
 # Cross product | i j k | into R2.
 # | R0.x R0.y R0.z |
 # | R1.x R1.y R1.z |
 #
 MUL R2, R0.zxyw, R1.yzxw;
 MAD R2, R0.yzxw, R1.zxyw, -R2;

 How do you perform a 4-component vector absolute value in one
 instruction?

 #
 # Absolute value is the maximum of the negative and positive
 # components of a vector.
 #
 # R1 = abs(R0)
 #
 MAX R1, R0, -R0;

 How do you compute the determinant of a 3x3 matrix in three
 instructions?

 #
 # Determinant of | R0.x R0.y R0.z | into R3
 # | R1.x R1.y R1.z |
 # | R2.x R2.y R2.z |
 #
 MUL R3, R1.zxyw, R2.yzxw;
 MAD R3, R1.yzxw, R2.zxyw, -R3;
 DP3 R3, R0, R3;

 How do you transform a vertex position by a 4x4 matrix and then
 perform a homogeneous divide?

 #
 # c[20] = modelview row 0
 # c[21] = modelview row 1
 # c[22] = modelview row 2
 # c[23] = modelview row 3
 #
 # result = R5
 #
 DP4 R5.w, v[OPOS], c[23];
 DP4 R5.x, v[OPOS], c[20];
 DP4 R5.y, v[OPOS], c[21];
 DP4 R5.z, v[OPOS], c[22];
 RCP R11, R5.w;
 MUL R5,R5,R11;

 How do you perform a vector weighting of two vectors using a single
 weight?

 #
 # R2 = vector 0
 # R3 = vector 1
 # v[WGHT].x = scalar weight to blend vectors 0 and 1
 # result = R2 * v[WGHT].x + R3 * (1-v[WGHT])
 #
 # this is because A*B + (1-A)*C = A*(B-C) + C
 #
 ADD R4, R2, -R3;
 MAD R4, v[WGHT].x, R4, R3;

 2-16

 How do you reduce a value to some fundamental period such as 2*PI?

 #
 # c[36] = (1.0/(2*PI), 2*PI, 0.0, 0.0)
 #
 # R1.x = input value
 # R2 = result
 #
 MUL R0, R1, c[36].x;
 EXP R4, R0.x;
 MUL R2, R4.y, c[36].y;

 How do you implement a simple specular and diffuse lighting
 computation with an eye-space normal?

 !!VP1.0
 #
 # c[0-3] = modelview projection (composite) matrix
 # c[4-7] = modelview inverse transpose
 # c[32] = normalized eye-space light direction (infinite light)
 # c[33] = normalized constant eye-space half-angle vector (infinite viewer)
 # c[35].x = pre-multiplied monochromatic diffuse light color & diffuse material
 # c[35].y = pre-multiplied monochromatic ambient light color & diffuse material
 # c[36] = specular color
 # c[38].x = specular power
 #
 # outputs homogenous position and color
 #
 DP4 o[HPOS].x, c[0], v[OPOS];
 DP4 o[HPOS].y, c[1], v[OPOS];
 DP4 o[HPOS].z, c[2], v[OPOS];
 DP4 o[HPOS].w, c[3], v[OPOS];
 DP3 R0.x, c[4], v[NRML];
 DP3 R0.y, c[5], v[NRML];
 DP3 R0.z, c[6], v[NRML]; # R0 = n' = transformed normal
 DP3 R1.x, c[32], R0; # R1.x = Lpos DOT n'
 DP3 R1.y, c[33], R0; # R1.y = hHat DOT n'
 MOV R1.w, c[38].x; # R1.w = specular power
 LIT R2, R1; # Compute lighting values
 MAD R3, c[35].x, R2.y, c[35].y; # diffuse + emissive
 MAD o[COL0].xyz, c[36], R2.z, R3; # + specular
 END

 Can you perturb transformed vertex positions with a vertex program?

 Yes. Here is an example that performs an object-space diffuse
 lighting computations and perturbs the vertex position based on
 this lighting result. Do not take this example too seriously.

 !!VP1.0
 #
 # c[0-3] = modelview projection (composite) matrix
 # c[32] = normalized light direction in object-space
 # c[35] = yellow diffuse material, (1.0, 1.0, 0.0, 1.0)
 # c[64].x = 0.0
 # c[64].z = 0.125, a scaling factor
 #
 # outputs diffuse illumination for color and perturbed position
 #
 DP3 R0, c[32], v[NRML]; # light direction DOT normal
 MUL o[COL0].xyz, R0, c[35];
 MAX R0, c[64].x, R0;
 MUL R0, R0, v[NRML];

 2-17

 MUL R0, R0, c[64].z;
 ADD R1, v[OPOS], -R0; # perturb object space position
 DP4 o[HPOS].x, c[0], R1;
 DP4 o[HPOS].y, c[1], R1;
 DP4 o[HPOS].z, c[2], R1;
 DP4 o[HPOS].w, c[3], R1;
 END

 What if more exponential precision is needed than provided by the
 builtin EXP instruction?

 A sequence of vertex program instructions can be used refine
 the initial EXP approximation. The pseudo-macro below shows an
 example of how to refine the EXP approximation.

 The psuedo-macro requires 10 instructions, 1 temp register,
 and 2 constant locations.

 CE0 = { 9.61597636e-03, -1.32823968e-03, 1.47491097e-04, -1.08635004e-05 };
 CE1 = { 1.00000000e+00, -6.93147182e-01, 2.40226462e-01, -5.55036440e-02 };

 /* Rt != Ro && Rt != Ri */
 EXP_MACRO(Ro:vector, Ri:scalar, Rt:vector) {
 EXP Rt, Ri.x; /* Use appropriate component of Ri */
 MAD Rt.w, c[CE0].w, Rt.y, c[CE0].z;
 MAD Rt.w, Rt.w,Rt.y, c[CE0].y;
 MAD Rt.w, Rt.w,Rt.y, c[CE0].x;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].w;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].z;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].y;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].x;
 RCP Rt.w, Rt.w;
 MUL Ro, Rt.w, Rt.x; /* Apply user write mask to Ro */
 }

 Simulation gives |max abs error| < 3.77e-07 over the range (0.0
 <= x < 1.0). Actual vertex program precision may be slightly
 less accurate than this.

 What if more exponential precision is needed than provided by the
 builtin LOG instruction?

 The pseudo-macro requires 10 instructions, 1 temp register,
 and 3 constant locations.

 CL0 = { 2.41873696e-01, -1.37531206e-01, 5.20646796e-02, -9.31049418e-03 };
 CL1 = { 1.44268966e+00, -7.21165776e-01, 4.78684813e-01, -3.47305417e-01 };
 CL2 = { 1.0, NA, NA, NA };

 /* Rt != Ro && Rt != Ri */
 LOG_MACRO(Ro:vector, Ri:scalar, Rt:vector) {
 LOG Rt, Ri.x; /* Use appropriate component of Ri */
 ADD Rt.y, Rt.y, -c[CL2].x;
 MAD Rt.w, c[CL0].w, Rt.y, c[CL0].z;
 MAD Rt.w, Rt.w, Rt.y,c[CL0].y;
 MAD Rt.w, Rt.w, Rt.y,c[CL0].x;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].w;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].z;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].y;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].x;
 MAD Ro, Rt.w, Rt.y, Rt.x; /* Apply user write mask to Ro */
 }

 2-18

 Simulation gives |max abs error| < 1.79e-07 over the range (1.0
 <= x < 2.0). Actual vertex program precision may be slightly
 less accurate than this.

New Procedures and Functions

 void BindProgramNV(enum target, uint id);

 void DeleteProgramsNV(sizei n, const uint *ids);

 void ExecuteProgramNV(enum target, uint id, const float *params);

 void GenProgramsNV(sizei n, uint *ids);

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *residences);

 void RequestResidentProgramsNV(sizei n, uint *ids);

 void GetProgramParameterfvNV(enum target, uint index,
 enum pname, float *params);
 void GetProgramParameterdvNV(enum target, uint index,
 enum pname, double *params);

 void GetProgramivNV(uint id, enum pname, int *params);

 void GetProgramStringNV(uint id, enum pname, ubyte *program);

 void GetTrackMatrixivNV(enum target, uint address,
 enum pname, int *params);

 void GetVertexAttribdvNV(uint index, enum pname, double *params);
 void GetVertexAttribfvNV(uint index, enum pname, float *params);
 void GetVertexAttribivNV(uint index, enum pname, int *params);

 void GetVertexAttribPointervNV(uint index, enum pname, void **pointer);

 boolean IsProgramNV(uint id);

 void LoadProgramNV(enum target, uint id, sizei len,
 const ubyte *program);

 void ProgramParameter4fNV(enum target, uint index,
 float x, float y, float z, float w)
 void ProgramParameter4dNV(enum target, uint index,
 double x, double y, double z, double w)

 void ProgramParameter4dvNV(enum target, uint index,
 const double *params);
 void ProgramParameter4fvNV(enum target, uint index,
 const float *params);

 void ProgramParameters4dvNV(enum target, uint index,
 uint num, const double *params);
 void ProgramParameters4fvNV(enum target, uint index,
 uint num, const float *params);

 void TrackMatrixNV(enum target, uint address,
 enum matrix, enum transform);

 void VertexAttribPointerNV(uint index, int size, enum type, sizei stride,
 const void *pointer);

 2-19

 void VertexAttrib1sNV(uint index, short x);
 void VertexAttrib1fNV(uint index, float x);
 void VertexAttrib1dNV(uint index, double x);
 void VertexAttrib2sNV(uint index, short x, short y);
 void VertexAttrib2fNV(uint index, float x, float y);
 void VertexAttrib2dNV(uint index, double x, double y);
 void VertexAttrib3sNV(uint index, short x, short y, short z);
 void VertexAttrib3fNV(uint index, float x, float y, float z);
 void VertexAttrib3dNV(uint index, double x, double y, double z);
 void VertexAttrib4sNV(uint index, short x, short y, short z, short w);
 void VertexAttrib4fNV(uint index, float x, float y, float z, float w);
 void VertexAttrib4dNV(uint index, double x, double y, double z, double w);
 void VertexAttrib4ubNV(uint index, ubyte x, ubyte y, ubyte z, ubyte w);

 void VertexAttrib1svNV(uint index, const short *v);
 void VertexAttrib1fvNV(uint index, const float *v);
 void VertexAttrib1dvNV(uint index, const double *v);
 void VertexAttrib2svNV(uint index, const short *v);
 void VertexAttrib2fvNV(uint index, const float *v);
 void VertexAttrib2dvNV(uint index, const double *v);
 void VertexAttrib3svNV(uint index, const short *v);
 void VertexAttrib3fvNV(uint index, const float *v);
 void VertexAttrib3dvNV(uint index, const double *v);
 void VertexAttrib4svNV(uint index, const short *v);
 void VertexAttrib4fvNV(uint index, const float *v);
 void VertexAttrib4dvNV(uint index, const double *v);
 void VertexAttrib4ubvNV(uint index, const ubyte *v);

 void VertexAttribs1svNV(uint index, sizei n, const short *v);
 void VertexAttribs1fvNV(uint index, sizei n, const float *v);
 void VertexAttribs1dvNV(uint index, sizei n, const double *v);
 void VertexAttribs2svNV(uint index, sizei n, const short *v);
 void VertexAttribs2fvNV(uint index, sizei n, const float *v);
 void VertexAttribs2dvNV(uint index, sizei n, const double *v);
 void VertexAttribs3svNV(uint index, sizei n, const short *v);
 void VertexAttribs3fvNV(uint index, sizei n, const float *v);
 void VertexAttribs3dvNV(uint index, sizei n, const double *v);
 void VertexAttribs4svNV(uint index, sizei n, const short *v);
 void VertexAttribs4fvNV(uint index, sizei n, const float *v);
 void VertexAttribs4dvNV(uint index, sizei n, const double *v);
 void VertexAttribs4ubvNV(uint index, sizei n, const ubyte *v);

New Tokens

 Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev, and by the <target> parameter of BindProgramNV,
 ExecuteProgramNV, GetProgramParameter[df]vNV, GetTrackMatrixivNV,
 LoadProgramNV, ProgramParameter[s]4[df][v]NV, and TrackMatrixNV:

 VERTEX_PROGRAM_NV 0x8620

 Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev:

 VERTEX_PROGRAM_POINT_SIZE_NV 0x8642
 VERTEX_PROGRAM_TWO_SIDE_NV 0x8643

 Accepted by the <target> parameter of ExecuteProgramNV and
 LoadProgramNV:

 VERTEX_STATE_PROGRAM_NV 0x8621

 2-20

 Accepted by the <pname> parameter of GetVertexAttrib[dfi]vNV:

 ATTRIB_ARRAY_SIZE_NV 0x8623
 ATTRIB_ARRAY_STRIDE_NV 0x8624
 ATTRIB_ARRAY_TYPE_NV 0x8625
 CURRENT_ATTRIB_NV 0x8626

 Accepted by the <pname> parameter of GetProgramParameterfvNV
 and GetProgramParameterdvNV:

 PROGRAM_PARAMETER_NV 0x8644

 Accepted by the <pname> parameter of GetVertexAttribPointervNV:

 ATTRIB_ARRAY_POINTER_NV 0x8645

 Accepted by the <pname> parameter of GetProgramivNV:

 PROGRAM_TARGET_NV 0x8646
 PROGRAM_LENGTH_NV 0x8627
 PROGRAM_RESIDENT_NV 0x8647

 Accepted by the <pname> parameter of GetProgramStringNV:

 PROGRAM_STRING_NV 0x8628

 Accepted by the <pname> parameter of GetTrackMatrixivNV:

 TRACK_MATRIX_NV 0x8648
 TRACK_MATRIX_TRANSFORM_NV 0x8649

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_TRACK_MATRIX_STACK_DEPTH_NV 0x862E
 MAX_TRACK_MATRICES_NV 0x862F
 CURRENT_MATRIX_STACK_DEPTH_NV 0x8640
 CURRENT_MATRIX_NV 0x8641
 VERTEX_PROGRAM_BINDING_NV 0x864A
 PROGRAM_ERROR_POSITION_NV 0x864B

 Accepted by the <matrix> parameter of TrackMatrixNV:

 NONE
 MODELVIEW
 PROJECTION
 TEXTURE
 COLOR (if ARB_imaging is supported)
 MODELVIEW_PROJECTION_NV 0x8629
 TEXTUREi_ARB

 where i is between 0 and n-1 where n is the number of texture units
 supported.

 Accepted by the <matrix> parameter of TrackMatrixNV and by the
 <mode> parameter of MatrixMode:

 MATRIX0_NV 0x8630
 MATRIX1_NV 0x8631
 MATRIX2_NV 0x8632
 MATRIX3_NV 0x8633
 MATRIX4_NV 0x8634

 2-21

 MATRIX5_NV 0x8635
 MATRIX6_NV 0x8636
 MATRIX7_NV 0x8637

 (Enumerants 0x8638 through 0x863F are reserved for further matrix
 enumerants 8 through 15.)

 Accepted by the <transform> parameter of TrackMatrixNV:

 IDENTITY_NV 0x862A
 INVERSE_NV 0x862B
 TRANSPOSE_NV 0x862C
 INVERSE_TRANSPOSE_NV 0x862D

 Accepted by the <array> parameter of EnableClientState and
 DisableClientState, by the <cap> parameter of IsEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
 GetDoublev:

 VERTEX_ATTRIB_ARRAY0_NV 0x8650
 VERTEX_ATTRIB_ARRAY1_NV 0x8651
 VERTEX_ATTRIB_ARRAY2_NV 0x8652
 VERTEX_ATTRIB_ARRAY3_NV 0x8653
 VERTEX_ATTRIB_ARRAY4_NV 0x8654
 VERTEX_ATTRIB_ARRAY5_NV 0x8655
 VERTEX_ATTRIB_ARRAY6_NV 0x8656
 VERTEX_ATTRIB_ARRAY7_NV 0x8657
 VERTEX_ATTRIB_ARRAY8_NV 0x8658
 VERTEX_ATTRIB_ARRAY9_NV 0x8659
 VERTEX_ATTRIB_ARRAY10_NV 0x865A
 VERTEX_ATTRIB_ARRAY11_NV 0x865B
 VERTEX_ATTRIB_ARRAY12_NV 0x865C
 VERTEX_ATTRIB_ARRAY13_NV 0x865D
 VERTEX_ATTRIB_ARRAY14_NV 0x865E
 VERTEX_ATTRIB_ARRAY15_NV 0x865F

 Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
 Map1d and Map1f and by the <cap> parameter of Enable, Disable, and
 IsEnabled, and by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAP1_VERTEX_ATTRIB0_4_NV 0x8660
 MAP1_VERTEX_ATTRIB1_4_NV 0x8661
 MAP1_VERTEX_ATTRIB2_4_NV 0x8662
 MAP1_VERTEX_ATTRIB3_4_NV 0x8663
 MAP1_VERTEX_ATTRIB4_4_NV 0x8664
 MAP1_VERTEX_ATTRIB5_4_NV 0x8665
 MAP1_VERTEX_ATTRIB6_4_NV 0x8666
 MAP1_VERTEX_ATTRIB7_4_NV 0x8667
 MAP1_VERTEX_ATTRIB8_4_NV 0x8668
 MAP1_VERTEX_ATTRIB9_4_NV 0x8669
 MAP1_VERTEX_ATTRIB10_4_NV 0x866A
 MAP1_VERTEX_ATTRIB11_4_NV 0x866B
 MAP1_VERTEX_ATTRIB12_4_NV 0x866C
 MAP1_VERTEX_ATTRIB13_4_NV 0x866D
 MAP1_VERTEX_ATTRIB14_4_NV 0x866E
 MAP1_VERTEX_ATTRIB15_4_NV 0x866F

 Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
 Map2d and Map2f and by the <cap> parameter of Enable, Disable, and
 IsEnabled, and by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 2-22

 MAP2_VERTEX_ATTRIB0_4_NV 0x8670
 MAP2_VERTEX_ATTRIB1_4_NV 0x8671
 MAP2_VERTEX_ATTRIB2_4_NV 0x8672
 MAP2_VERTEX_ATTRIB3_4_NV 0x8673
 MAP2_VERTEX_ATTRIB4_4_NV 0x8674
 MAP2_VERTEX_ATTRIB5_4_NV 0x8675
 MAP2_VERTEX_ATTRIB6_4_NV 0x8676
 MAP2_VERTEX_ATTRIB7_4_NV 0x8677
 MAP2_VERTEX_ATTRIB8_4_NV 0x8678
 MAP2_VERTEX_ATTRIB9_4_NV 0x8679
 MAP2_VERTEX_ATTRIB10_4_NV 0x867A
 MAP2_VERTEX_ATTRIB11_4_NV 0x867B
 MAP2_VERTEX_ATTRIB12_4_NV 0x867C
 MAP2_VERTEX_ATTRIB13_4_NV 0x867D
 MAP2_VERTEX_ATTRIB14_4_NV 0x867E
 MAP2_VERTEX_ATTRIB15_4_NV 0x867F

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

 -- Section 2.10 "Coordinate Transformations"

 Add this initial discussion:

 "Per-vertex parameters are transformed before the transformation
 results are used to generate primitives for rasterization, establish
 a raster position, or generate vertices for selection or feedback.

 Each vertex's per-vertex parameters are transformed by one of
 two vertex transformation modes. The first vertex transformation mode
 is GL's conventional vertex transformation model. The second mode,
 known as 'vertex program' mode, transforms the vertex's per-vertex
 parameters by an application-supplied vertex program.

 Vertex program mode is enabled and disabled, respectively, by

 void Enable(enum target);

 and

 void Disable(enum target);

 with target equal to VERTEX_PROGRAM_NV. When vertex program mode
 is enabled, vertices are transformed by the currently bound vertex
 program as discussed in section 2.14."

 Update the original initial paragraph in the section to read:

 "When vertex program mode is disabled, vertices, normals, and texture
 coordinates are transformed before their coordinates are used to
 produce an image in the framebuffer. We begin with a description
 of how vertex coordinates are transformed and how the transformation
 is controlled in the case when vertex program mode is disabled. The
 discussion that continues through section 2.13 applies when vertex
 program mode is disabled."

 -- Section 2.10.2 "Matrices"

 Change the first paragraph to read:

 "The projection matrix and model-view matrix are set and modified
 with a variety of commands. The affected matrix is determined by
 the current matrix mode. The current matrix mode is set with

 2-23

 void MatrixMode(enum mode);

 which takes one of the pre-defined constants TEXTURE, MODELVIEW,
 COLOR, PROJECTION, or MATRIXi_NV as the argument. In the case
 of MATRIXi_NV, i is an integer between 0 and n-1 indicating one
 of n tracking matrices where n is the value of the implementation
 defined constant MAX_TRACK_MATRICES_NV. TEXTURE is described
 later in section 2.10.2, and COLOR is described in section 3.6.3.
 The tracking matrices of the form MATRIXi_NV are described in
 section 2.14.5. If the current matrix mode is MODELVIEW, then
 matrix operations apply to the model-view matrix; if PROJECTION,
 then they apply to the projection matrix."

 Change the last paragraph to read:

 "The state required to implement transformations consists of a n-value
 integer indicating the current matrix mode (where n is 4 + the number
 of tracking matrices supported), a stack of at least two 4x4 matrices
 for each of COLOR, PROJECTION, and TEXTURE with associated stack
 pointers, n stacks (where n is at least 8) of at least one 4x4 matrix
 for each MATRIXi_NV with associated stack pointers, and a stack of at
 least 32 4x4 matrices with an associated stack pointer for MODELVIEW.
 Initially, there is only one matrix on each stack, and all matrices
 are set to the identity. The initial matrix mode is MODELVIEW."

 -- NEW Section 2.14 "Vertex Programs"

 "The conventional GL vertex transformation model described
 in sections 2.10 through 2.13 is a configurable but essentially
 hard-wired sequence of per-vertex computations based on a canonical
 set of per-vertex parameters and vertex transformation related
 state such as transformation matrices, lighting parameters, and
 texture coordinate generation parameters.

 The general success and utility of the conventional GL vertex
 transformation model reflects its basic correspondence to the
 typical vertex transformation requirements of 3D applications.

 However when the conventional GL vertex transformation model
 is not sufficient, the vertex program mode provides a substantially
 more flexible model for vertex transformation. The vertex program
 mode permits applications to define their own vertex programs.

 2.14.1 The Vertex Program Execution Model

 A vertex program is a sequence of floating-point 4-component vector
 operations that operate on per-vertex attributes and program
 parameters. Vertex programs execute on a per-vertex basis and
 operate on each vertex completely independently from the processing
 of other vertices. Vertex programs execute a finite fixed sequence
 of instructions with no branching or looping. Vertex programs
 execute without data hazards so results computed in one operation can
 be used immediately afterwards. The result of a vertex program is
 a set of vertex result vectors that becomes the transformed vertex
 parameters used by primitive assembly.

 Vertex programs use a specific well-defined instruction set, register
 set, and operational model defined in the following sections.

 The vertex program register set consists of five types of registers
 described in the following five sections.

 2.14.1.1 The Vertex Attribute Registers

 2-24

 The Vertex Attribute Registers are sixteen 4-component
 vector floating-point registers containing the current vertex's
 per-vertex attributes. These registers are numbered 0 through 15.
 These registers are private to each vertex program invocation and are
 initialized at each vertex program invocation by the current vertex
 attribute state specified with VertexAttribNV commands. These registers
 are read-only during vertex program execution. The VertexAttribNV
 commands used to update the vertex attribute registers can be issued
 both outside and inside of Begin/End pairs. Vertex program execution
 is provoked by updating vertex attribute zero. Updating vertex
 attribute zero outside of a Begin/End pair is ignored without
 generating any error (identical to the Vertex command operation).

 The commands

 void VertexAttrib{1234}{sfd}NV(uint index, T coords);
 void VertexAttrib{1234}{sfd}vNV(uint index, T coords);
 void VertexAttrib4ubNV(uint index, T coords);
 void VertexAttrib4ubvNV(uint index, T coords);

 specify the particular current vertex attribute indicated by index.
 The coordinates for each vertex attribute are named x, y, z, and w.
 The VertexAttrib1NV family of commands sets the x coordinate to the
 provided single argument while setting y and z to 0 and w to 1.
 Similarly, VertexAttrib2NV sets x and y to the specified values,
 z to 0 and w to 1; VertexAttrib3NV sets x, y, and z, with w set
 to 1, and VertexAttrib4NV sets all four coordinates. The error
 INVALID_VALUE is generated if index is greater than 15.

 No conversions are applied to the vertex attributes specified as
 type short, float, or double. However, vertex attributes specified
 as type ubyte are converted as described by Table 2.6.

 The commands

 void VertexAttribs{1234}{sfd}vNV(uint index, sizei n, T coords[]);
 void VertexAttribs4ubvNV(uint index, sizei n, GLubyte coords[]);

 specify a contiguous set of n vertex attributes. The effect of

 VertexAttribs{1234}{sfd}vNV(index, n, coords)

 is the same as the command sequence

 #define NUM k /* where k is 1, 2, 3, or 4 components */
 int i;
 for (i=n-1; i>=0; i--) {
 VertexAttrib{NUM}{sfd}vNV(i+index, &coords[i*NUM]);
 }

 VertexAttribs4ubvNV behaves similarly.

 The VertexAttribNV calls equivalent to VertexAttribsNV are issued in
 reverse order so that vertex program execution is provoked when index
 is zero only after all the other vertex attributes have first been
 specified.

 2.14.1.2 The Program Parameter Registers

 The Program Parameter Registers are ninety-six 4-component
 floating-point vector registers containing the vertex program
 parameters. These registers are numbered 0 through 95. This

 2-25

 relatively large set of registers is intended to hold parameters
 such as matrices, lighting parameters, and constants required by
 vertex programs. Vertex program parameter registers can be updated
 in one of two ways: by the ProgramParameterNV commands outside
 of a Begin/End pair or by a vertex state program executed outside
 of a Begin/End pair (vertex state programs are discussed in section
 2.14.3).

 The commands

 void ProgramParameter4fNV(enum target, uint index,
 float x, float y, float z, float w)
 void ProgramParameter4dNV(enum target, uint index,
 double x, double y, double z, double w)

 specify the particular program parameter indicated by index.
 The coordinates values x, y, z, and w are assigned to the respective
 components of the particular program parameter. target must be
 VERTEX_PROGRAM_NV.

 The commands

 void ProgramParameter4dvNV(enum target, uint index, double *params);
 void ProgramParameter4fvNV(enum target, uint index, float *params);

 operate identically to ProgramParameter4fNV and ProgramParameter4dNV
 respectively except that the program parameters are passed as an
 array of four components.

 The commands

 void ProgramParameters4dvNV(enum target, uint index,
 uint num, double *params);
 void ProgramParameters4fvNV(enum target, uint index,
 uint num, float *params);

 specify a contiguous set of num program parameters. The effect is
 the same as

 for (i=index; i<index+num; i++) {
 ProgramParameter4{fd}vNV(i, params + i*4);
 }

 The program parameter registers are shared to all vertex program
 invocations within a rendering context. ProgramParameterNV command
 updates and vertex state program executions are serialized with
 respect to vertex program invocations and other vertex state program
 executions.

 Writes to the program parameter registers during vertex state program
 execution can be maskable on a per-component basis.

 The error INVALID_VALUE is generated if any ProgramParameterNV has
 an index is greater than 95.

 The initial value of all ninety-six program parameter registers is
 (0,0,0,0).

 2.14.1.3 The Address Register

 The Address Register is a single 4-component vector signed 32-bit
 integer register though only the x component of the vector is
 accessible. The register is private to each vertex program invocation

 2-26

 and is initialized to (0,0,0,0) at every vertex program invocation.
 This register can be written during vertex program execution (but
 not read) and its value can be used for as a relative offset for
 reading vertex program parameter registers. Only the vertex program
 parameter registers can be read using relative addressing (writes
 using relative addressing are not supported).

 See the discussion of relative addressing of program parameters
 in section 2.14.1.9 and the discussion of the ARL instruction in
 section 2.14.1.10.1.

 2.14.1.4 The Temporary Registers

 The Temporary Registers are twelve 4-component floating-point vector
 registers used to hold temporary results during vertex program
 execution. These registers are numbered 0 through 11. These
 registers are private to each vertex program invocation and
 initialized to (0,0,0,0) at every vertex program invocation. These
 registers can be read and written during vertex program execution.
 Writes to these registers can be maskable on a per-component basis.

 2.14.1.5 The Vertex Result Register Set

 The Vertex Result Registers are fifteen 4-component floating-point
 vector registers used to write the results of a vertex program.
 Each register value is initialized to (0,0,0,1) at the invocation
 of each vertex program. Writes to the vertex result registers can
 be maskable on a per-component basis. These registers are named in
 Table X.1 and further discussed below.

Vertex Result Component
Register Name Description Interpretation
-------------- --------------------------------- --------------
 HPOS Homogeneous clip space position (x,y,z,w)
 COL0 Primary color (front-facing) (r,g,b,a)
 COL1 Secondary color (front-facing) (r,g,b,a)
 BFC0 Back-facing primary color (r,g,b,a)
 BFC1 Back-facing secondary color (r,g,b,a)
 FOGC Fog coordinate (f,*,*,*)
 PSIZ Point size (p,*,*,*)
 TEX0 Texture coordinate set 0 (s,t,r,q)
 TEX1 Texture coordinate set 1 (s,t,r,q)
 TEX2 Texture coordinate set 2 (s,t,r,q)
 TEX3 Texture coordinate set 3 (s,t,r,q)
 TEX4 Texture coordinate set 4 (s,t,r,q)
 TEX5 Texture coordinate set 5 (s,t,r,q)
 TEX6 Texture coordinate set 6 (s,t,r,q)
 TEX7 Texture coordinate set 7 (s,t,r,q)

 Table X.1: Vertex Result Registers.

 HPOS is the transformed vertex's homogeneous clip space position.
 The vertex's homogeneous clip space position is converted to
 normalized device coordinates and transformed to window coordinates
 as described at the end of section 2.10 and in section 2.11.
 Further processing (subsequent to vertex program termination)
 is responsible for clipping primitives assembled from vertex
 program-generated vertices as described in section 2.10 but all
 client-defined clip planes are treated as if they are disabled when
 vertex program mode is enabled.

 Four distinct color results can be generated for each vertex.

 2-27

 COL0 is the transformed vertex's front-facing primary color.
 COL1 is the transformed vertex's front-facing secondary color.
 BFC0 is the transformed vertex's back-facing primary color. BFC1 is
 the transformed vertex's back-facing secondary color.

 Primitive coloring may operate in two-sided color mode. This behavior
 is enabled and disabled by calling Enable or Disable with the
 symbolic value VERTEX_PROGRAM_TWO_SIDE_NV. The selection between
 the back-facing colors and the front-facing colors depends on the
 primitive of which the vertex is a part. If the primitive is a
 point or a line segment, the front-facing colors are always selected.
 If the primitive is a polygon and two-sided color mode is disabled,
 the front-facing colors are selected. If it is a polygon and
 two-sided color mode is enabled, then the selection is based on the
 sign of the (clipped or unclipped) polygon's signed area computed in
 window coordinates. This facingness determination is identical to
 the two-sided lighting facingness determination described in section
 2.13.1.

 The selected primary and secondary colors for each primitive are
 clamped to the range [0,1] and then interpolated across the assembled
 primitive during rasterization with at least 8-bit accuracy for each
 color component.

 FOGC is the transformed vertex's fog coordinate. The register's
 first floating-point component is interpolated across the assembled
 primitive during rasterization and used as the fog distance to
 compute per-fragment the fog factor when fog is enabled. However,
 if both fog and vertex program mode are enabled, but the FOGC vertex
 result register is not written, the fog factor is overridden to 1.0.
 The register's other three components are ignored.

 Point size determination may operate in program-specified point
 size mode. This behavior is enabled and disabled by calling Enable
 or Disable with the symbolic value VERTEX_PROGRAM_POINT_SIZE_NV.
 If the vertex is for a point primitive and the mode is enabled
 and the PSIZ vertex result is written, the point primitive's size
 is determined by the clamped x component of the PSIZ register.
 Otherwise (because vertex program mode is disabled, program-specified
 point size mode is disabled, or because the vertex program did not
 write PSIZ), the point primitive's size is determined by the point
 size state (the state specified using the PointSize command).

 The PSIZ register's x component is clamped to the range zero through
 either the hi value of ALIASED_POINT_SIZE_RANGE if point smoothing
 is disabled or the hi value of the SMOOTH_POINT_SIZE_RANGE if
 point smoothing is enabled. The register's other three components
 are ignored.

 If the vertex is not for a point primitive, the value of the
 PSIZ vertex result register is ignored.

 TEX0 through TEX7 are the transformed vertex's texture coordinate
 sets for texture units 0 through 7. These floating-point coordinates
 are interpolated across the assembled primitive during rasterization
 and used for accessing textures. If the number of texture units
 supported is less than eight, the values of vertex result registers
 that do not correspond to existent texture units are ignored.

 2.14.1.6 Semantic Meaning for Vertex Attributes and Program Parameters

 One important distinction between the conventional GL vertex
 transformation mode and the vertex program mode is that per-vertex

 2-28

 parameters and other state parameters in vertex program mode do
 not have dedicated semantic interpretations the way that they do
 with the conventional GL vertex transformation mode.

 For example, in the conventional GL vertex transformation mode,
 the Normal command specifies a per-vertex normal. The semantic that
 the Normal command supplies a normal for lighting is established because
 that is how the per-vertex attribute supplied by the Normal command
 is used by the conventional GL vertex transformation mode.
 Similarly, other state parameters such as a light source position have
 semantic interpretations based on how the conventional GL vertex
 transformation model uses each particular parameter.

 In contrast, vertex attributes and program parameters for vertex
 programs have no pre-defined semantic meanings. The meaning of
 a vertex attribute or program parameter in vertex program mode is
 defined by how the vertex attribute or program parameter is used by
 the current vertex program to compute and write values to the Vertex
 Result Registers. This is the reason that per-vertex attributes and
 program parameters for vertex programs are numbered instead of named.

 For convenience however, the existing per-vertex parameters for the
 conventional GL vertex transformation mode (vertices, normals,
 colors, fog coordinates, vertex weights, and texture coordinates) are
 aliased to numbered vertex attributes. This aliasing is specified in
 Table X.2. The table includes how the various conventional components
 map to the 4-component vertex attribute components.

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter Command Mapping
--------- --------------- ----------------------------------- ------------
 0 vertex position Vertex x,y,z,w
 1 vertex weights VertexWeightEXT w,0,0,1
 2 normal Normal x,y,z,1
 3 primary color Color r,g,b,a
 4 secondary color SecondaryColorEXT r,g,b,1
 5 fog coordinate FogCoordEXT fc,0,0,1
 6 - - -
 7 - - -
 8 texture coord 0 MultiTexCoord(GL_TEXTURE0_ARB, ...) s,t,r,q
 9 texture coord 1 MultiTexCoord(GL_TEXTURE1_ARB, ...) s,t,r,q
 10 texture coord 2 MultiTexCoord(GL_TEXTURE2_ARB, ...) s,t,r,q
 11 texture coord 3 MultiTexCoord(GL_TEXTURE3_ARB, ...) s,t,r,q
 12 texture coord 4 MultiTexCoord(GL_TEXTURE4_ARB, ...) s,t,r,q
 13 texture coord 5 MultiTexCoord(GL_TEXTURE5_ARB, ...) s,t,r,q
 14 texture coord 6 MultiTexCoord(GL_TEXTURE6_ARB, ...) s,t,r,q
 15 texture coord 7 MultiTexCoord(GL_TEXTURE7_ARB, ...) s,t,r,q

Table X.2: Aliasing of vertex attributes with conventional per-vertex
parameters.

 Only vertex attribute zero is treated specially because it is
 the attribute that provokes the execution of the vertex program;
 this is the attribute that aliases to the Vertex command's vertex
 coordinates.

 The result of a vertex program is the set of post-transformation
 vertex parameters written to the Vertex Result Registers.
 All vertex programs must write a homogeneous clip space position, but
 the other Vertex Result Registers can be optionally written.

 2-29

 Clipping and culling are not the responsibility of vertex programs
 because these operations assume the assembly of multiple vertices
 into a primitive. View frustum clipping is performed subsequent to
 vertex program execution. Clip planes are not supported in vertex
 program mode.

 2.14.1.7 Vertex Program Specification

 Vertex programs are specified as an array of ubytes. The array is
 a string of ASCII characters encoding the program.

 The command

 LoadProgramNV(enum target, uint id, sizei len,
 const ubyte *program);

 loads a vertex program when the target parameter is VERTEX_PROGRAM_NV.
 Multiple programs can be loaded with different names. id names the
 program to load. The name space for programs is the positive integers
 (zero is reserved). The error INVALID_VALUE occurs if a program is
 loaded with an id of zero. The error INVALID_OPERATION is generated
 if a program is loaded for an id that is currently loaded with a
 program of a different program target. Managing the program name
 space and binding to vertex programs is discussed later in section
 2.14.1.8.

 program is a pointer to an array of ubytes that represents the
 program being loaded. The length of the array is indicated by len.

 A second program target type known as vertex state programs is
 discussed in 2.14.4.

 At program load time, the program is parsed into a set of tokens
 possibly separated by white space. Spaces, tabs, newlines, carriage
 returns, and comments are considered whitespace. Comments begin with
 the character "#" and are terminated by a newline, a carriage return,
 or the end of the program array.

 The Backus-Naur Form (BNF) grammar below specifies the syntactically
 valid sequences for vertex programs. The set of valid tokens can be
 inferred from the grammar. The token "" represents an empty string
 and is used to indicate optional rules. A program is invalid if it
 contains any undefined tokens or characters.

 <program> ::= "!!VP1.0" <instructionSequence> "END"

 <instructionSequence> ::= <instructionSequence> <instructionLine>
 | <instructionLine>

 <instructionLine> ::= <instruction> ";"

 <instruction> ::= <ARL-instruction>
 | <VECTORop-instruction>
 | <SCALARop-instruction>
 | <BINop-instruction>
 | <TRIop-instruction>

 <ARL-instruction> ::= "ARL" <addrReg> "," <scalarSrcReg>

 <VECTORop-instruction> ::= <VECTORop> <maskedDstReg> "," <swizzleSrcReg>

 <SCALARop-instruction> ::= <SCALARop> <maskedDstReg> "," <scalarSrcReg>

 2-30

 <BINop-instruction> ::= <BINop> <maskedDstReg> ","
 <swizzleSrcReg> "," <swizzleSrcReg>

 <TRIop-instruction> ::= <TRIop> <maskedDstReg> ","
 <swizzleSrcReg> "," <swizzleSrcReg> ","
 <swizzleSrcReg>

 <VECTORop> ::= "MOV"
 | "LIT"

 <SCALARop> ::= "RCP"
 | "RSQ"
 | "EXP"
 | "LOG"

 <BINop> ::= "MUL"
 | "ADD"
 | "DP3"
 | "DP4"
 | "DST"
 | "MIN"
 | "MAX"
 | "SLT"
 | "SGE"

 <TRIop> ::= "MAD"

 <scalarSrcReg> ::= <optionalSign> <srcReg> <scalarSuffix>

 <swizzleSrcReg> ::= <optionalSign> <srcReg> <swizzleSuffix>

 <maskedDstReg> ::= <dstReg> <optionalMask>

 <optionalMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

 <optionalSign> ::= "-"
 | ""

 <srcReg> ::= <vertexAttribReg>
 | <progParamReg>
 | <temporaryReg>

 <dstReg> ::= <temporaryReg>
 | <vertexResultReg>

 <vertexAttribReg> ::= "v" "[" vertexAttribRegNum "]"

 <vertexAttribRegNum> ::= decimal integer from 0 to 15 inclusive

 2-31

 | "OPOS"
 | "WGHT"
 | "NRML"
 | "COL0"
 | "COL1"
 | "FOGC"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 <progParamReg> ::= <absProgParamReg>
 | <relProgParamReg>

 <absProgParamReg> ::= "c" "[" <progParamRegNum> "]"

 <progParamRegNum> ::= decimal integer from 0 to 95 inclusive

 <relProgParamReg> ::= "c" "[" <addrReg> "]"
 | "c" "[" <addrReg> "+" <progParamPosOffset> "]"
 | "c" "[" <addrReg> "-" <progParamNegOffset> "]"

 <progParamPosOffset> ::= decimal integer from 0 to 63 inclusive

 <progParamNegOffset> ::= decimal integer from 0 to 64 inclusive

 <addrReg> ::= "A0" "." "x"

 <temporaryReg> ::= "R0"
 | "R1"
 | "R2"
 | "R3"
 | "R4"
 | "R5"
 | "R6"
 | "R7"
 | "R8"
 | "R9"
 | "R10"
 | "R11"

 <vertexResultReg> ::= "o" "[" vertexResultRegName "]"

 <vertexResultRegName> ::= "HPOS"
 | "COL0"
 | "COL1"
 | "BFC0"
 | "BFC1"
 | "FOGC"
 | "PSIZ"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 2-32

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component>
 | "." <component> <component>
 <component> <component>

 <component> ::= "x"
 | "y"
 | "z"
 | "w"

 The <vertexAttribRegNum> rule matches both register numbers 0 through
 15 and a set of mnemonics that abbreviate the aliasing of conventional
 the per-vertex parameters to vertex attribute register numbers.
 Table X.3 shows the mapping from mnemonic to vertex attribute register
 number and what the mnemonic abbreviates.

 Vertex Attribute
Mnemonic Register Number Meaning
-------- ---------------- --------------------
 "OPOS" 0 object position
 "WGHT" 1 vertex weight
 "NRML" 2 normal
 "COL0" 3 primary color
 "COL1" 4 secondary color
 "FOGC" 5 fog coordinate
 "TEX0" 8 texture coordinate 0
 "TEX1" 9 texture coordinate 1
 "TEX2" 10 texture coordinate 2
 "TEX3" 11 texture coordinate 3
 "TEX4" 12 texture coordinate 4
 "TEX5" 13 texture coordinate 5
 "TEX6" 14 texture coordinate 6
 "TEX7" 15 texture coordinate 7

Table X.3: The mapping between vertex attribute register numbers,
mnemonics, and meanings.

 A vertex programs fails to load if it does not write at least one
 component of the HPOS register.

 A vertex program fails to load if it contains more than 128
 instructions.

 A vertex program fails to load if any instruction sources more than
 one unique program parameter register.

 A vertex program fails to load if any instruction sources more than
 one unique vertex attribute register.

 The error INVALID_OPERATION is generated if a vertex program fails
 to load because it is not syntactically correct or for one of the
 semantic restrictions listed above.

 The error INVALID_OPERATION is generated if a program is loaded for
 id when id is currently loaded with a program of a different target.

 A successfully loaded vertex program is parsed into a sequence of
 instructions. Each instruction is identified by its tokenized name.
 The operation of these instructions when executed is defined in
 section 2.14.1.10.

 2-33

 A successfully loaded program replaces the program previously assigned
 to the name specified by id. If the OUT_OF_MEMORY error is generated
 by LoadProgramNV, no change is made to the previous contents of the
 named program.

 Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte
 offset into the last loaded program string indicating where the first
 error in the program. If the program fails to load because of a
 semantic restriction that cannot be determined until the program
 is fully scanned, the error position will be len, the length of
 the program. If the program loads successfully, the value of
 PROGRAM_ERROR_POSITION_NV is assigned the value negative one.

 2.14.1.8 Vertex Program Binding and Program Management

 The current vertex program is invoked whenever vertex attribute
 zero is updated (whether by a VertexAttributeNV or Vertex command).
 The current vertex program is updated by

 BindProgramNV(enum target, uint id);

 where target must be VERTEX_PROGRAM_NV. This binds the vertex program
 named by id as the current vertex program. The error INVALID_OPERATION
 is generated if id names a program that is not a vertex program
 (for example, if id names a vertex state program as described in
 section 2.14.4).

 Binding to a nonexistent program id does not generate an error.
 In particular, binding to program id zero does not generate an error.
 However, because program zero cannot be loaded, program zero is
 always nonexistent. If a program id is successfully loaded with a
 new vertex program and id is also the currently bound vertex program,
 the new program is considered the currently bound vertex program.

 The INVALID_OPERATION error is generated when both vertex program
 mode is enabled and Begin is called (or when a command that performs
 an implicit Begin is called) if the current vertex program is
 nonexistent or not valid. A vertex program may not be valid for
 reasons explained in section 2.14.5.

 Programs are deleted by calling

 void DeleteProgramsNV(sizei n, const uint *ids);

 ids contains n names of programs to be deleted. After a program
 is deleted, it becomes nonexistent, and its name is again unused.
 If a program that is currently bound is deleted, it is as though
 BindProgramNV has been executed with the same target as the deleted
 program and program zero. Unused names in ids are silently ignored,
 as is the value zero.

 The command

 void GenProgramsNV(sizei n, uint *ids);

 returns n previously unused program names in ids. These names
 are marked as used, for the purposes of GenProgramsNV only,
 but they become existent programs only when the are first loaded
 using LoadProgramNV. The error INVALID_VALUE is generated if n
 is negative.

 An implementation may choose to establish a working set of programs on
 which binding and ExecuteProgramNV operations (execute programs are

 2-34

 explained in section 2.14.4) are performed with higher performance.
 A program that is currently part of this working set is said to
 be resident.

 The command

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *residences);

 returns TRUE if all of the n programs named in ids are resident,
 or if the implementation does not distinguish a working set. If at
 least one of the programs named in ids is not resident, then FALSE is
 returned, and the residence of each program is returned in residences.
 Otherwise the contents of residences are not changed. If any of
 the names in ids are nonexistent or zero, FALSE is returned, the
 error INVALID_VALUE is generated, and the contents of residences
 are indeterminate. The residence status of a single named program
 can also be queried by calling GetProgramivNV with id set to the
 name of the program and pname set to PROGRAM_RESIDENT_NV.

 AreProgramsResidentNV indicates only whether a program is
 currently resident, not whether it could not be made resident.
 An implementation may choose to make a program resident only on
 first use, for example. The client may guide the GL implementation
 in determining which programs should be resident by requesting a
 set of programs to make resident.

 The command

 void RequestResidentProgramsNV(sizei n, const uint *ids);

 requests that the n programs named in ids should be made resident.
 While all the programs are not guaranteed to become resident,
 the implementation should make a best effort to make as many of
 the programs resident as possible. As a result of making the
 requested programs resident, program names not among the requested
 programs may become non-resident. Higher priority for residency
 should be given to programs listed earlier in the ids array.
 RequestResidentProgramsNV silently ignores attempts to make resident
 nonexistent program names or zero. AreProgramsResidentNV can be
 called after RequestResidentProgramsNV to determine which programs
 actually became resident.

 2.14.1.9 Vertex Program Register Accesses

 There are 17 vertex program instructions. The instructions and their
 respective input and output parameters are summarized in Table X.4.

 Output
 Inputs (vector or
Opcode (scalar or vector) replicated scalar) Operation
------ ------------------ ------------------ --------------------------
 ARL s address register address register load
 MOV v v move
 MUL v,v v multiply
 ADD v,v v add
 MAD v,v,v v multiply and add
 RCP s ssss reciprocal
 RSQ s ssss reciprocal square root
 DP3 v,v ssss 3-component dot product
 DP4 v,v ssss 4-component dot product
 DST v,v v distance vector
 MIN v,v v minimum

 2-35

 MAX v,v v maximum
 SLT v,v v set on less than
 SGE v,v v set on greater equal than
 EXP s v exponential base 2
 LOG s v logarithm base 2
 LIT v v light coefficients

Table X.4: Summary of vertex program instructions. "v" indicates a
vector input or output, "s" indicates a scalar input, and "ssss" indicates
a scalar output replicated across a 4-component vector.

 Instructions use either scalar source values or swizzled source
 values, indicated in the grammar (see section 2.14.1.7) by the rules
 <scalarSrcReg> and <swizzleSrcReg> respectively. Either type of
 source value is negated when the <optionalSign> rule matches "-".

 Scalar source register values select one of the source register's
 four components based on the <component> of the <scalarSuffix> rule.
 The characters "x", "y", "z", and "w" match the x, y, z, and
 w components respectively. The indicated component is used as a
 scalar for the particular source value.

 Swizzled source register values may arbitrarily swizzle the source
 register's components based on the <swizzleSuffix> rule. In the case
 where the <swizzleSuffix> matches (ignoring whitespace) the pattern
 ".????" where each question mark is one of "x", "y", "z", or "w",
 this indicates the ith component of the source register value should
 come from the component named by the ith component in the sequence.
 For example, if the swizzle suffix is ".yzzx" and the source register
 contains [2.0, 8.0, 9.0, 0.0] the swizzled source register value
 used by the instruction is [8.0, 9.0, 9.0, 2.0].

 If the <swizzleSuffix> rule matches "", this is treated the same as
 ".xyzw". If the <swizzleSuffix> rule matches (ignoring whitespace)
 ".x", ".y", ".z", or ".w", these are treated the same as ".xxxx",
 ".yyyy", ".zzzz", and ".wwww" respectively.

 The register sourced for either a scalar source register value or a
 swizzled source register value is indicated in the grammar by the rule
 <srcReg>. The <vertexAttribReg>, <progParamReg>, and <temporaryReg>
 sub-rules correspond to one of the vertex attribute registers,
 program parameter registers, or temporary register respectively.

 The vertex attribute and temporary registers are accessed absolutely
 based on the numbered register. In the case of vertex attribute
 registers, if the <vertexAttribRegNum> corresponds to a mnemonic,
 the corresponding register number from Table X.3 is used.

 Either absolute or relative addressing can be used to access the
 program parameter registers. Absolute addressing is indicated by
 the grammar by the <absProgParamReg> rule. Absolute addressing
 accesses the numbered program parameter register indicated by the
 <progParamRegNum> rule. Relative addressing accesses the numbered
 program parameter register plus an offset. The offset is the positive
 value of <progParamPosOffset> if the <progParamPosOffset> rule is
 matched, or the offset is the negative value of <progParamNegOffset>
 if the <progParamNegOffset> rule is matched, or otherwise the offset
 is zero. Relative addressing is available only for program parameter
 registers and only for reads (not writes). Relative addressing
 reads outside of the 0 to 95 inclusive range always read the value
 (0,0,0,0).

 The result of all instructions except ARL is written back to a

 2-36

 masked destination register, indicated in the grammar by the rule
 <maskedDstReg>.

 Writes to each component of the destination register can be masked,
 indicated in the grammar by the <optionalMask> rule. If the optional
 mask is "", all components are written. Otherwise, the optional
 mask names particular components to write. The characters "x",
 "y", "z", and "w" match the x, y, z, and w components respectively.
 For example, an optional mask of ".xzw" indicates that the x, z,
 and w components should be written but not the y component.
 The grammar requires that the destination register mask components
 must be listed in "xyzw" order.

 The actual destination register is indicated in the grammar by
 the rule <dstReg>. The <temporaryReg> and <vertexResultReg>
 sub-rules correspond to either the temporary registers or vertex
 result registers. The temporary registers are determined and accessed
 as described earlier.

 The vertex result registers are accessed absolutely based on the
 named register. The <vertexResultRegName> rule corresponds to
 registers named in Table X.1.

 2.14.1.10 Vertex Program Instruction Set Operations

 The operation of the 17 vertex program instructions are described in
 this section. After the textual description of each instruction's
 operation, a register transfer level description is also presented.

 The following conventions are used in each instruction's register
 transfer level description. The 4-component vector variables "t",
 "u", and "v" are assigned intermediate results. The destination
 register is called "destination". The three possible source registers
 are called "source0", "source1", and "source2" respectively.

 The x, y, z, and w vector components are referred to with the suffixes
 ".x", ".y", ".z", and ".w" respectively. The suffix ".c" is used for
 scalar source register values and c represents the particular source
 register's selected scalar component. Swizzling of components is
 indicated with the suffixes ".c***", ".*c**", ".**c*", and ".***c"
 where c is meant to indicate the x, y, z, or w component selected for
 the particular source operand swizzle configuration. For example:

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;

 This example indicates that t should be assigned the swizzled
 version of the source0 operand based on the source0 operand's swizzle
 configuration.

 The variables "negate0", "negate1", and "negate2" are booleans
 that are true when the respective source value should be negated.
 The variables "xmask", "ymask", "zmask", and "wmask" are booleans
 that are true when the destination write mask for the respective
 component is enabled for writing.

 Otherwise, the register transfer level descriptions mimic ANSI C
 syntax.

 The idiom "IEEE(expression)" represents the s23e8 single-precision
 result of the expression if evaluated using IEEE single-precision

 2-37

 floating point operations. The IEEE idiom is used to specify the
 maximum allowed deviation from IEEE single-precision floating-point
 arithmetic results.

 The following abbreviations are also used:

 +Inf floating-point representation of positive infinity
 -Inf floating-point representation of negative infinity
 +NaN floating-point representation of positive not a number
 -NaN floating-point representation of negative not a number
 NA not applicable or not used

 2.14.1.10.1 ARL: Address Register Load

 The ARL instruction moves value of the source scalar into the address
 register. Conceptually, the address register load instruction is
 a 4-component vector signed integer register, but the only valid
 address register component for writing and indexing is the x
 component. The only use for A0.x is as a base address for program
 parameter reads. The source value is a float that is truncated
 towards negative infinity into a signed integer.

 t.x = source0.c;
 if (negate0) t.x = -t.x;
 A0.x = floor(t.x);

 2.14.1.10.2 MOV: Move

 The MOV instruction moves the value of the source vector into the
 destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 if (xmask) destination.x = t.x;
 if (ymask) destination.y = t.y;
 if (zmask) destination.z = t.z;
 if (wmask) destination.w = t.w;

 2.14.1.10.3 MUL: Multiply

 The MUL instruction multiplies the values of the two source vectors
 into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;

 2-38

 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = t.x * u.x;
 if (ymask) destination.y = t.y * u.y;
 if (zmask) destination.z = t.z * u.z;
 if (wmask) destination.w = t.w * u.w;

 2.14.1.10.4 ADD: Add

 The ADD instruction adds the values of the two source vectors into
 the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = t.x + u.x;
 if (ymask) destination.y = t.y + u.y;
 if (zmask) destination.z = t.z + u.z;
 if (wmask) destination.w = t.w + u.w;

 2.14.1.10.5 MAD: Multiply and Add

 The MAD instruction adds the value of the third source vector to the
 product of the values of the first and second two source vectors,
 writing the result to the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;

 2-39

 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 v.x = source2.c***;
 v.y = source2.*c**;
 v.z = source2.**c*;
 v.w = source2.***c;
 if (negate2) {
 v.x = -v.x;
 v.y = -v.y;
 v.z = -v.z;
 v.w = -v.w;
 }
 if (xmask) destination.x = t.x * u.x + v.x;
 if (ymask) destination.y = t.y * u.y + v.y;
 if (zmask) destination.z = t.z * u.z + v.z;
 if (wmask) destination.w = t.w * u.w + v.w;

 2.14.1.10.6 RCP: Reciprocal

 The RCP instruction inverts the value of the source scalar into
 the destination register. The reciprocal of exactly 1.0 must be
 exactly 1.0.

 Additionally the reciprocal of negative infinity gives [-0.0, -0.0,
 -0.0, -0.0]; the reciprocal of negative zero gives [-Inf, -Inf, -Inf,
 -Inf]; the reciprocal of positive zero gives [+Inf, +Inf, +Inf, +Inf];
 and the reciprocal of positive infinity gives [0.0, 0.0, 0.0, 0.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 if (t.x == 1.0f) {
 u.x = 1.0f;
 } else {
 u.x = 1.0f / t.x;
 }
 if (xmask) destination.x = u.x;
 if (ymask) destination.y = u.x;
 if (zmask) destination.z = u.x;
 if (wmask) destination.w = u.x;

 where

 | u.x - IEEE(1.0f/t.x) | < 1.0f/(2^22)

 for 1.0f <= t.x <= 2.0f. The intent of this precision requirement is
 that this amount of relative precision apply over all values of t.x.

 2.14.1.10.7 RSQ: Reciprocal Square Root

 The RSQ instruction assigns the inverse square root of the
 absolute value of the source scalar into the destination register.

 Additionally, RSQ(0.0) gives [+Inf, +Inf, +Inf, +Inf]; and both
 RSQ(+Inf) and RSQ(-Inf) give [0.0, 0.0, 0.0, 0.0];

 t.x = source0.c;
 if (negate0) {

 2-40

 t.x = -t.x;
 }
 u.x = 1.0f / sqrt(fabs(t.x));
 if (xmask) destination.x = u.x;
 if (ymask) destination.y = u.x;
 if (zmask) destination.z = u.x;
 if (wmask) destination.w = u.x;

 where

 | u.x - IEEE(1.0f/sqrt(fabs(t.x))) | < 1.0f/(2^22)

 for 1.0f <= t.x <= 4.0f. The intent of this precision requirement is
 that this amount of relative precision apply over all values of t.x.

 2.14.1.10.8 DP3: Three-Component Dot Product

 The DP3 instruction assigns the three-component dot product of the
 two source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 }
 v.x = t.x * u.x + t.y * u.y + t.z * u.z;
 if (xmask) destination.x = v.x;
 if (ymask) destination.y = v.x;
 if (zmask) destination.z = v.x;
 if (wmask) destination.w = v.x;

 2.14.1.10.9 DP4: Four-Component Dot Product

 The DP4 instruction assigns the four-component dot product of the
 two source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;

 2-41

 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 v.x = t.x * u.x + t.y * u.y + t.z * u.z + t.w * u.w;
 if (xmask) destination.x = v.x;
 if (ymask) destination.y = v.x;
 if (zmask) destination.z = v.x;
 if (wmask) destination.w = v.x;

 2.14.1.10.10 DST: Distance Vector

 The DST instructions calculates a distance vector for the values
 of two source vectors. The first vector is assumed to be [NA, d*d,
 d*d, NA] and the second source vector is assumed to be [NA, 1.0/d,
 NA, 1.0/d], where the value of a component labeled NA is undefined.
 The destination vector is then assigned [1,d,d*d,1.0/d].

 t.y = source0.*c**;
 t.z = source0.**c*;
 if (negate0) {
 t.y = -t.y;
 t.z = -t.z;
 }
 u.y = source1.*c**;
 u.w = source1.***c;
 if (negate1) {
 u.y = -u.y;
 u.w = -u.w;
 }
 if (xmask) destination.x = 1.0;
 if (ymask) destination.y = t.y*u.y;
 if (zmask) destination.z = t.z;
 if (wmask) destination.w = u.w;

 2.14.1.10.11 MIN: Minimum

 The MIN instruction assigns the component-wise minimum of the two
 source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x < u.x) ? t.x : u.x;
 if (ymask) destination.y = (t.y < u.y) ? t.y : u.y;
 if (zmask) destination.z = (t.z < u.z) ? t.z : u.z;

 2-42

 if (wmask) destination.w = (t.w < u.w) ? t.w : u.w;

 2.14.1.10.12 MAX: Maximum

 The MAX instruction assigns the component-wise maximum of the two
 source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x >= u.x) ? t.x : u.x;
 if (ymask) destination.y = (t.y >= u.y) ? t.y : u.y;
 if (zmask) destination.z = (t.z >= u.z) ? t.z : u.z;
 if (wmask) destination.w = (t.w >= u.w) ? t.w : u.w;

 2.14.1.10.13 SLT: Set On Less Than

 The SLT instruction performs a component-wise assignment of either
 1.0 or 0.0 into the destination register. 1.0 is assigned if the
 value of the first source vector is less than the value of the second
 source vector; otherwise, 0.0 is assigned.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x < u.x) ? 1.0 : 0.0;
 if (ymask) destination.y = (t.y < u.y) ? 1.0 : 0.0;
 if (zmask) destination.z = (t.z < u.z) ? 1.0 : 0.0;
 if (wmask) destination.w = (t.w < u.w) ? 1.0 : 0.0;

 2-43

 2.14.1.10.14 SGE: Set On Greater or Equal Than

 The SGE instruction performs a component-wise assignment of either
 1.0 or 0.0 into the destination register. 1.0 is assigned if the
 value of the first source vector is greater than or equal the value
 of the second source vector; otherwise, 0.0 is assigned.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x >= u.x) ? 1.0 : 0.0;
 if (ymask) destination.y = (t.y >= u.y) ? 1.0 : 0.0;
 if (zmask) destination.z = (t.z >= u.z) ? 1.0 : 0.0;
 if (wmask) destination.w = (t.w >= u.w) ? 1.0 : 0.0;

 2.14.1.10.15 EXP: Exponential Base 2

 The EXP instruction generates an approximation of the exponential base
 2 for the value of a source scalar. This approximation is assigned
 to the z component of the destination register. Additionally,
 the x and y components of the destination register are assigned
 values useful for determining a more accurate approximation. The
 exponential base 2 of the source scalar can be better approximated
 by destination.x*FUNC(destination.y) where FUNC is some user
 approximation (presumably implemented by subsequent instructions in
 the vertex program) to 2^destination.y where 0.0 <= destination.y <
 1.0.

 Additionally, EXP(-Inf) or if the exponential result underflows
 gives [0.0, 0.0, 0.0, 0.0]; and EXP(+Inf) or if the exponential result
 overflows gives [+Inf, 0.0, +Inf, 1.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 q.x = 2^floor(t.x);
 q.y = t.x - floor(t.x);
 q.z = q.x * APPX(q.y);
 if (xmask) destination.x = q.x;
 if (ymask) destination.y = q.y;
 if (zmask) destination.z = q.z;
 if (wmask) destination.w = 1.0;

 where APPX is an implementation dependent approximation of exponential

 2-44

 base 2 such that

 | exp(q.y*log(2.0))-APPX(q.y) | < 1/(2^11)

 for all 0 <= q.y < 1.0.

 The expression "2^floor(t.x)" should overflow to +Inf and underflow
 to zero.

 2.14.1.10.16 LOG: Logarithm Base 2

 The LOG instruction generates an approximation of the logarithm base
 2 for the absolute value of a source scalar. This approximation
 is assigned to the z component of the destination register.
 Additionally, the x and y components of the destination register are
 assigned values useful for determining a more accurate approximation.
 The logarithm base 2 of the absolute value of the source scalar
 can be better approximated by destination.x+FUNC(destination.y)
 where FUNC is some user approximation (presumably implemented by
 subsequent instructions in the vertex program) of log2(destination.y)
 where 1.0 <= destination.y < 2.0.

 Additionally, LOG(0.0) gives [-Inf, 1.0, -Inf, 1.0]; and both
 LOG(+Inf) and LOG(-Inf) give [+Inf, 1.0, +Inf, 1.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 if (fabs(t.x) != 0.0f) {
 if (fabs(t.x) == +Inf) {
 q.x = +Inf;
 q.y = 1.0;
 q.z = +Inf;
 } else {
 q.x = Exponent(t.x);
 q.y = Mantissa(t.x);
 q.z = q.x + APPX(q.y);
 }
 } else {
 q.x = -Inf;
 q.y = 1.0;
 q.z = -Inf;
 }
 if (xmask) destination.x = q.x;
 if (ymask) destination.y = q.y;
 if (zmask) destination.z = q.z;
 if (wmask) destination.w = 1.0;

 where APPX is an implementation dependent approximation of logarithm
 base 2 such that

 | log(q.y)/log(2.0) - APPX(q.y) | < 1/(2^11)

 for all 1.0 <= q.y < 2.0.

 The "Exponent(t.x)" function returns the unbiased exponent between
 -126 and 127. For example, "Exponent(1.0)" equals 0.0. (Note that
 the IEEE floating-point representation maintains the exponent as a
 biased value.) Larger or smaller exponents should generate +Inf or
 -Inf respectively. The "Mantissa(t.x)" function returns a value
 in the range [1.0f, 2.0). The intent of these functions is that
 fabs(t.x) is approximately "Mantissa(t.x)*2^Exponent(t.x)".

 2-45

 2.14.1.10.17 LIT: Light Coefficients

 The LIT instruction is intended to compute ambient, diffuse,
 and specular lighting coefficients from a diffuse dot product,
 a specular dot product, and a specular power that is clamped to
 (-128,128) exclusive. The x component of the source vector is
 assumed to contain a diffuse dot product (unit normal vector dotted
 with a unit light vector). The y component of the source vector is
 assumed to contain a Blinn specular dot product (unit normal vector
 dotted with a unit half-angle vector). The w component is assumed
 to contain a specular power.

 An implementation must support at least 8 fraction bits in the
 specular power. Note that because 0.0 times anything must be 0.0,
 taking any base to the power of 0.0 will yield 1.0.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.w = -t.w;
 }
 if (t.w < -(128.0-epsilon)) t.w = -(128.0-epsilon);
 else if (t.w > 128-epsilon) t.w = 128-epsilon;
 if (t.x < 0.0) t.x = 0.0;
 if (t.y < 0.0) t.y = 0.0;
 if (xmask) destination.x = 1.0;
 if (ymask) destination.y = t.x;
 if (zmask) destination.z = (t.x > 0.0) ? EXP(t.w*LOG(t.y)) : 0.0;
 if (wmask) destination.w = 1.0;

 where EXP and LOG are functions that approximate the exponential base
 2 and logarithm base 2 with the identical accuracy and special case
 requirements of the EXP and LOG instructions. epsilon is 1.0/256.0
 or approximately 0.0039 which would correspond to representing the
 specular power with a s8.8 representation.

 2.14.1.11 Vertex Program Floating Point Requirements

 All vertex program calculations are assumed to use IEEE single
 precision floating-point math with a format of s1e8m23 (one signed
 bit, 8 bits of exponent, 23 bits of magnitude) or better and the
 round-to-zero rounding mode. The only exceptions to this are the RCP,
 RSQ, LOG, EXP, and LIT instructions.

 Note that (positive or negative) 0.0 times anything is (positive)
 0.0.

 The RCP and RSQ instructions deliver results accurate to 1.0/(2^22)
 and the approximate output (the z component) of the EXP and LOG
 instructions only has to be accurate to 1.0/(2^11). The LIT
 instruction specular output (the z component) is allowed an error
 equivalent to the combination of the EXP and LOG combination to
 implement a power function.

 The floor operations used by the ARL and EXP instructions must
 operate identically. Specifically, the EXP instruction's floor(t.x)
 intermediate result must exactly match the integer stored in the
 address register by the ARL instruction.

 2-46

 Since distance is calculated as (d^2)*(1/sqrt(d^2)), 0.0 multiplied
 by anything must be 0.0. This affects the MUL, MAD, DP3, DP4, DST,
 and LIT instructions.

 Because if/then/else conditional evaluation is done by multiplying
 by 1.0 or 0.0 and adding, the floating point computations require:

 0.0 * x = 0.0 for all x (including +Inf, -Inf, +NaN, and -NaN)
 1.0 * x = x for all x (including +Inf and -Inf)
 0.0 + x = x for all x (including +Inf and -Inf)

 Including +Inf, -Inf, +NaN, and -NaN when applying the above three
 rules is recommended but not required. (The recommended inclusion
 of +Inf, -Inf, +NaN, and -NaN when applying the first rule is
 inconsistent with IEEE floating-point requirements.)

 For the purpose of comparisons performed by the SGE and SLT
 instructions, -0.0 is less than +0.0. (This is inconsistent with
 IEEE floating-point requirements).

 No floating-point exceptions or interrupts are generated. Denorms
 are not supported; if a denorm is input, it is treated as 0.0 (ie,
 denorms are flushed to zero).

 Computations involving +NaN or -NaN generate +NaN, except for the
 requirement that zero times +NaN or -NaN must always be zero. (This
 exception is inconsistent with IEEE floating-point requirements).

 2.14.2 Vertex Program Update for the Current Raster Position

 When vertex programs are enabled, the raster position is determined
 by the current vertex program. The raster position specified by
 RasterPos is treated as if they were specified in a Vertex command.
 The contents of vertex result register set is used to update respective
 raster position state.

 Assuming an existent program, the homogeneous clip-space coordinates
 are passed to clipping as if they represented a point and assuming no
 client-defined clip planes are enabled. If the point is not culled,
 then the projection to window coordinates is computed (section 2.10)
 and saved as the current raster position and the valid bit is set.
 If the current vertex program is nonexistent or the "point" is
 culled, the current raster position and its associated data become
 indeterminate and the raster position valid bit is cleared.

 2.14.3 Vertex Arrays for Vertex Attributes

 Data for vertex attributes in vertex program mode may be specified
 using vertex array commands. The client may specify and enable any
 of sixteen vertex attribute arrays.

 The vertex attribute arrays are ignored when vertex program mode
 is disabled. When vertex program mode is enabled, vertex attribute
 arrays are used.

 The command

 void VertexAttribPointerNV(uint index, int size, enum type,
 sizei stride, const void *pointer);

 describes the locations and organizations of the sixteen vertex
 attribute arrays. index specifies the particular vertex attribute
 to be described. size indicates the number of values per vertex

 2-47

 that are stored in the array; size must be one of 1, 2, 3, or 4.
 type specifies the data type of the values stored in the array.
 type must be one of SHORT, FLOAT, DOUBLE, or UNSIGNED_BYTE and these
 values correspond to the array types short, int, float, double, and
 ubyte respectively. The INVALID_OPERATION error is generated if
 type is UNSIGNED_BYTE and size is not 4. The INVALID_VALUE error
 is generated if index is greater than 15. The INVALID_VALUE error
 is generated if stride is negative.

 The one, two, three, or four values in an array that correspond to a
 single vertex attribute comprise an array element. The values within
 each array element at stored sequentially in memory. If the stride
 is specified as zero, then array elements are stored sequentially
 as well. Otherwise points to the ith and (i+1)st elements of an array
 differ by stride basic machine units (typically unsigned bytes),
 the pointer to the (i+1)st element being greater. pointer specifies
 the location in memory of the first value of the first element of
 the array being specified.

 Vertex attribute arrays are enabled with the EnableClientState command
 and disabled with the DisableClientState command. The value of the
 argument to either command is VERTEX_ATTRIB_ARRAYi_NV where i is an
 integer between 0 and 15; specifying a value of i enables or
 disables the vertex attribute array with index i. The constants
 obey VERTEX_ATTRIB_ARRAYi_NV = VERTEX_ATTRIB_ARRAY0_NV + i.

 When vertex program mode is enabled, the ArrayElement command operates
 as described in this section in contrast to the behavior described
 in section 2.8. Likewise, any vertex array transfer commands that
 are defined in terms of ArrayElement (DrawArrays, DrawElements, and
 DrawRangeElements) assume the operation of ArrayElement described
 in this section when vertex program mode is enabled.

 When vertex program mode is enabled, the ArrayElement command
 transfers the ith element of particular enabled vertex arrays as
 described below. For each enabled vertex attribute array, it is
 as though the corresponding command from section 2.14.1.1 were
 called with a pointer to element i. For each vertex attribute,
 the corresponding command is VertexAttrib[size][type]v, where size
 is one of [1,2,3,4], and type is one of [s,f,d,ub], corresponding
 to the array types short, int, float, double, and ubyte respectively.

 However, if a given vertex attribute array is disabled, but its
 corresponding aliased conventional per-vertex parameter's vertex
 array (as described in section 2.14.1.6) is enabled, then it is
 as though the corresponding command from section 2.7 or section
 2.6.2 were called with a pointer to element i. In this case, the
 corresponding command is determined as described in section 2.8's
 description of ArrayElement.

 If the vertex attribute array 0 is enabled, it is as though
 VertexAttrib[size][type]v(0, ...) is executed last, after the
 executions of other corresponding commands. If the vertex attribute
 array 0 is disabled but the vertex array is enabled, it is as though
 Vertex[size][type]v is executed last, after the executions of other
 corresponding commands.

 2.14.4 Vertex State Programs

 Vertex state programs share the same instruction set as and a similar
 execution model to vertex programs. While vertex program are executed
 implicitly when a vertex transformation is provoked, vertex state
 programs are executed explicitly, independently of any vertices.

 2-48

 Vertex state programs can write program parameter registers, but
 may not write vertex result registers.

 The purpose of a vertex state program is to update program parameter
 registers by means of an application-defined program. Typically,
 an application will load a set of program parameters and then execute
 a vertex state program that reads and updates the program parameter
 registers. For example, a vertex state program might normalize a
 set of unnormalized vectors previously loaded as program parameters.
 The expectation is that subsequently executed vertex programs would
 use the normalized program parameters.

 Vertex state programs are loaded with the same LoadProgramNV command
 (see section 2.14.1.7) used to load vertex programs except that the
 target must be VERTEX_STATE_PROGRAM_NV when loading a vertex state
 program.

 Vertex state programs must conform to a more limited grammar than
 the grammar for vertex programs. The vertex state program grammar
 for syntactically valid sequences is the same as the grammar defined
 in section 2.14.1.7 with the following modified rules:

 <program> ::= "!!VSP1.0" <instructionSequence> "END"

 <dstReg> ::= <absProgParamReg>
 | <temporaryReg>

 <vertexAttribReg> ::= "v" "[" "0" "]"

 A vertex state program fails to load if it does not write at least
 one program parameter register.

 A vertex state program fails to load if it contains more than 128
 instructions.

 A vertex state program fails to load if any instruction sources more
 than one unique program parameter register.

 A vertex state program fails to load if any instruction sources
 more than one unique vertex attribute register (this is necessarily
 true because only vertex attribute 0 is available in vertex state
 programs).

 The error INVALID_OPERATION is generated if a vertex state program
 fails to load because it is not syntactically correct or for one
 of the other reasons listed above.

 A successfully loaded vertex state program is parsed into a sequence
 of instructions. Each instruction is identified by its tokenized
 name. The operation of these instructions when executed is defined
 in section 2.14.1.10.

 Executing vertex state programs is legal only outside a Begin/End
 pair. A vertex state program may not read any vertex attribute
 register other than register zero. A vertex state program may not
 write any vertex result register.

 The command

 ExecuteProgramNV(enum target, uint id, const float *params);

 executes the vertex state program named by id. The target must be
 VERTEX_STATE_PROGRAM_NV and the id must be the name of program loaded

 2-49

 with a target type of VERTEX_STATE_PROGRAM_NV. params points to
 an array of four floating-point values that are loaded into vertex
 attribute register zero (the only vertex attribute readable from a
 vertex state program).

 The INVALID_OPERATION error is generated if the named program is
 nonexistent, is invalid, or the program is not a vertex state
 program. A vertex state program may not be valid for reasons
 explained in section 2.14.5.

 2.14.5 Tracking Matrices

 As a convenience to applications, standard GL matrix state can be
 tracked into program parameter vectors. This permits vertex programs
 to access matrices specified through GL matrix commands.

 In addition to GL's conventional matrices, several additional matrices
 are available for tracking. These matrices have names of the form
 MATRIXi_NV where i is between zero and n-1 where n is the value
 of the MAX_TRACK_MATRICES_NV implementation dependent constant.
 The MATRIXi_NV constants obey MATRIXi_NV = MATRIX0_NV + i. The value
 of MAX_TRACK_MATRICES_NV must be at least eight. The maximum
 stack depth for tracking matrices is defined by the
 MAX_TRACK_MATRIX_STACK_DEPTH_NV and must be at least 1.

 The command

 TrackMatrixNV(enum target, uint address, enum matrix, enum transform);

 tracks a given transformed version of a particular matrix into
 a contiguous sequence of four vertex program parameter registers
 beginning at address. target must be VERTEX_PROGRAM_NV (though
 tracked matrices apply to vertex state programs as well because both
 vertex state programs and vertex programs shared the same program
 parameter registers). matrix must be one of NONE, MODELVIEW,
 PROJECTION, TEXTURE, TEXTUREi_ARB (where i is between 0 and n-1
 where n is the number of texture units supported), COLOR (if
 the ARB_imaging subset is supported), MODELVIEW_PROJECTION_NV,
 or MATRIXi_NV. transform must be one of IDENTITY_NV, INVERSE_NV,
 TRANSPOSE_NV, or INVERSE_TRANSPOSE_NV. The INVALID_VALUE error is
 generated if address is not a multiple of four.

 The MODELVIEW_PROJECTION_NV matrix represents the concatenation of
 the current modelview and projection matrices. If M is the current
 modelview matrix and P is the current projection matrix, then the
 MODELVIEW_PROJECTION_NV matrix is C and computed as

 C = P M

 Matrix tracking for the specified program parameter register and the
 next consecutive three registers is disabled when NONE is supplied
 for matrix. When tracking is disabled the previously tracked program
 parameter registers retain the state of their last tracked values.
 Otherwise, the specified transformed version of matrix is tracked into
 the specified program parameter register and the next three registers.
 Whenever the matrix changes, the transformed version of the matrix
 is updated in the specified range of program parameter registers.
 If TEXTURE is specified for matrix, the texture matrix for the current
 active texture unit is tracked. If TEXTUREi_ARB is specified for
 matrix, the <i>th texture matrix is tracked.

 Matrices are tracked row-wise meaning that the top row of the
 transformed matrix is loaded into the program parameter address,

 2-50

 the second from the top row of the transformed matrix is loaded into
 the program parameter address+1, the third from the top row of the
 transformed matrix is loaded into the program parameter address+2,
 and the bottom row of the transformed matrix is loaded into the
 program parameter address+3. The transformed matrix may be identical
 to the specified matrix, the inverse of the specified matrix, the
 transpose of the specified matrix, or the inverse transpose of the
 specified matrix, depending on the value of transform.

 When matrix tracking is enabled for a particular program parameter
 register sequence, updates to the program parameter using
 ProgramParameterNV commands, a vertex program, or a vertex state
 program are not possible. The INVALID_OPERATION error is generated
 if a ProgramParameterNV command is used to update a program parameter
 register currently tracking a matrix.

 The INVALID_OPERATION error is generated by ExecuteProgramNV when
 the vertex state program requested for execution writes to a program
 parameter register that is currently tracking a matrix because the
 program is considered invalid.

 2.14.6 Required Vertex Program State

 The state required for vertex programs consists of:

 a bit indicating whether or not program mode is enabled;

 a bit indicating whether or not two-sided color mode is enabled;

 a bit indicating whether or not program-specified point size mode
 is enabled;

 96 4-component floating-point program parameter registers;

 16 4-component vertex attribute registers (though this state is
 aliased with the current normal, primary color, secondary color,
 fog coordinate, weights, and texture coordinate sets);

 24 sets of matrix tracking state for each set of four sequential
 program parameter registers, consisting of a n-valued integer
 indicated the tracked matrix or GL_NONE (where n is 5 + the number
 of texture units supported + the number of tracking matrices
 supported) and a four-valued integer indicating the transformation
 of the tracked matrix;

 an unsigned integer naming the currently bound vertex program

 and the state must be maintained to indicate which integers
 are currently in use as program names.

 Each existent program object consists of a target, a boolean indicating
 whether the program is resident, an array of type ubyte containing the
 program string, and the length of the program string array. Initially,
 no program objects exist.

 Program mode, two-sided color mode, and program-specified point size
 mode are all initially disabled.

 The initial state of all 96 program parameter registers is (0,0,0,0).

 The initial state of the 16 vertex attribute registers is (0,0,0,1)
 except in cases where a vertex attribute register aliases to a
 conventional GL transform mode vertex parameter in which case

 2-51

 the initial state is the initial state of the respective aliased
 conventional vertex parameter.

 The initial state of the 24 sets of matrix tracking state is NONE
 for the tracked matrix and IDENTITY_NV for the transformation of the
 tracked matrix.

 The initial currently bound program is zero.

 The client state required to implement the 16 vertex attribute
 arrays consists of 16 boolean values, 16 memory pointers, 16 integer
 stride values, 16 symbolic constants representing array types,
 and 16 integers representing values per element. Initially, the
 boolean values are each disabled, the memory pointers are each null,
 the strides are each zero, the array types are each FLOAT, and the
 integers representing values per element are each four."

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

 -- Section 3.3 "Points"

 Change the first paragraph to read:

 "When program vertex mode is disabled, the point size for rasterizing
 points is controlled with

 void PointSize(float size);

 size specifies the width or diameter of a point. The initial point size
 value is 1.0. A value less than or equal to zero results in the error
 INVALID_VALUE. When vertex program mode is enabled, the point size for
 rasterizing points is determined as described in section 2.14.1.5."

 -- Section 3.9 "Color Sum"

 Change the first paragraph to read:

 "At the beginning of color sum, a fragment has two RGBA colors: a
 primary color cpri (which texturing, if enabled, may have modified)
 and a secondary color csec. If vertex program mode is disabled, csec
 is defined by the lighting equations in section 2.13.1. If vertex
 program mode is enabled, csec is the fragment's secondary color,
 obtained by interpolating the COL1 (or BFC1 if the primitive is a
 polygon, the vertex program two-sided color mode is enabled, and the
 polygon is back-facing) vertex result register RGB components for the
 vertices making up the primitive; the alpha component of csec when
 program mode is enabled is always zero. The components of these two
 colors are summed to produce a single post-texturing RGBA color c.
 The components of c are then clamped to the range [0,1]."

 -- Section 3.10 "Fog"

 Change the initial sentences in the second paragraph to read:

 "This factor f may be computed according to one of three equations:

 f = exp(-d*c) (3.24)
 f = exp(-(d*c)^2) (3.25)
 f = (e-c)/(e-s) (3.26)

 If vertex program mode is enabled, then c is the fragment's fog
 coordinate, obtained by interpolating the FOGC vertex result register
 values for the vertices making up the primitive. When vertex program

 2-52

 mode is disabled, the c is the eye-coordinate distance from the eye,
 (0,0,0,1) in eye-coordinates, to the fragment center." ...

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Framebuffer)

 None

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

 -- Section 5.1 "Evaluators"

 Add the following lines to the end of table 5.1 (page 165):

 target k values
 ------------------------- --- ------------------------------
 MAP1_VERTEX_ATTRIB0_4_NV 4 x, y, z, w vertex attribute 0
 MAP1_VERTEX_ATTRIB1_4_NV 4 x, y, z, w vertex attribute 1
 MAP1_VERTEX_ATTRIB2_4_NV 4 x, y, z, w vertex attribute 2
 MAP1_VERTEX_ATTRIB3_4_NV 4 x, y, z, w vertex attribute 3
 MAP1_VERTEX_ATTRIB4_4_NV 4 x, y, z, w vertex attribute 4
 MAP1_VERTEX_ATTRIB5_4_NV 4 x, y, z, w vertex attribute 5
 MAP1_VERTEX_ATTRIB6_4_NV 4 x, y, z, w vertex attribute 6
 MAP1_VERTEX_ATTRIB7_4_NV 4 x, y, z, w vertex attribute 7
 MAP1_VERTEX_ATTRIB8_4_NV 4 x, y, z, w vertex attribute 8
 MAP1_VERTEX_ATTRIB9_4_NV 4 x, y, z, w vertex attribute 9
 MAP1_VERTEX_ATTRIB10_4_NV 4 x, y, z, w vertex attribute 10
 MAP1_VERTEX_ATTRIB11_4_NV 4 x, y, z, w vertex attribute 11
 MAP1_VERTEX_ATTRIB12_4_NV 4 x, y, z, w vertex attribute 12
 MAP1_VERTEX_ATTRIB13_4_NV 4 x, y, z, w vertex attribute 13
 MAP1_VERTEX_ATTRIB14_4_NV 4 x, y, z, w vertex attribute 14
 MAP1_VERTEX_ATTRIB15_4_NV 4 x, y, z, w vertex attribute 15

 Replace the four paragraphs on pages 167-168 that explain the
 operation of EvalCoord:

 "EvalCoord operates differently depending on whether vertex program
 mode is enabled or not. We first discuss how EvalCoord operates when
 vertex program mode is disabled.

 When one of the EvalCoord commands is issued and vertex program
 mode is disabled, all currently enabled maps (excluding the
 maps that correspond to vertex attributes, i.e. maps of the form
 MAPx_VERTEX_ATTRIBn_4_NV). ..."

 Add a paragraph before the initial paragraph discussing AUTO_NORMAL:

 "When one of the EvalCoord commands is issued and vertex program mode
 is enabled, the evaluation and the issuing of per-vertex parameter commands
 matches the discussion above, except that if any vertex attribute
 maps are enabled, the corresponding VertexAttribNV call for each enabled
 vertex attribute map is issued with the map's evaluated coordinates
 and the corresponding aliased per-vertex parameter map is ignored
 if it is also enabled, with one important difference. As is the case when
 vertex program mode is disabled, the GL uses evaluated values
 instead of current values for those evaluations that are enabled
 (otherwise the current values are used). The order of the effective
 commands is immaterial, except that Vertex or VertexAttribNV(0,
 ...) (the commands that issue provoke vertex program execution)
 must be issued last. Use of evaluators has no effect on the current
 vertex attributes or conventional per-vertex parameters. If a
 vertex attribute map is disabled, but its corresponding conventional
 per-vertex parameter map is enabled, the conventional per-vertex

 2-53

 parameter map is evaluated and issued as when vertex program mode
 is not enabled."

 Replace the two paragraphs discussing AUTO_NORMAL with:

 "Finally, if either MAP2_VERTEX_3 or MAP2_VERTEX_4 is enabled or if
 both MAP2_VERTEX_ATTRIB0_4_NV and vertex program mode are enabled,
 then the normal to the surface is computed. Analytic computation,
 which sometimes yields normals of length zero, is one method which
 may be used. If automatic normal generation is enabled, then this
 computed normal is used as the normal associated with a generated
 vertex (when program mode is disabled) or as vertex attribute 2
 (when vertex program mode is enabled). Automatic normal generation
 is controlled with Enable and Disable with the symbolic constant
 AUTO_NORMAL. If automatic normal generation is disabled and vertex
 program mode is enabled, then vertex attribute 2 is evaluated
 as usual. If automatic normal generation and vertex program mode
 are disabled, then a corresponding normal map, if enabled, is used
 to produce a normal. If neither automatic normal generation nor
 a map corresponding to the normal per-vertex parameter (or vertex
 attribute 2 in program mode) are enabled, then no normal is sent with
 a vertex resulting from an evaluation (the effect is that the current
 normal is used). For MAP_VERTEX3, let q=p. For MAP_VERTEX_4 or
 MAP2_VERTEX_ATTRBI0_4_NV, let q = (x/w, y/w, z/w) where (x,y,z,w)=p.
 Then let

 m = (partial q / partial u) cross (partial q / partial v)

 Then when vertex program mode is disabled, the generated analytic
 normal, n, is given by n=m/||m||. However, when vertex program mode
 is enabled, the generated analytic normal used for vertex attribute
 2 is simply (mx,my,mz,1). In vertex program mode, the normalization
 of the generated analytic normal can be performed by the current
 vertex program."

 Change the respective sentences of the last paragraph discussing
 required evaluator state to read:

 "The state required for evaluators potentially consists of 9
 conventional one-dimensional map specifications, 16 vertex attribute
 one-dimensional map specifications, 9 conventional two-dimensional
 map specifications, and 16 vertex attribute two-dimensional map
 specifications indicating which are enabled. ... All vertex
 coordinate maps produce the coordinates (0,0,0,1) (or the appropriate
 subset); all normal coordinate maps produce (0,0,1); RGBA maps produce
 (1,1,1,1); color index maps produce 1.0; texture coordinate maps
 produce (0,0,0,1); and vertex attribute maps produce (0,0,0,1). ...
 If any evaluation command is issued when none of MAPn_VERTEX_3,
 MAPn_VERTEX_4, or MAPn_VERTEX_ATTRIB0_NV (where n is the map dimension
 being evaluated) are enabled, nothing happens."

 -- Section 5.4 "Display Lists"

 Add to the list of commands not compiled into display lists in the
 third to the last paragraph:

 "AreProgramsResidentNV, IsProgramNV, GenProgramsNV, DeleteProgramsNV,
 VertexAttribPointerNV"

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

 -- Section 6.1.12 "Saving and Restoring State"

 2-54

 Only the enables and vertex array state introduced by this extension
 can be pushed and popped.

 See the attribute column in table X.5 for determining what vertex
 program state can be pushed and popped with PushAttrib, PopAttrib,
 PushClientAttrib, and PopClientAttrib.

 The new evaluator enables in table 6.22 can also be pushed and
 popped.

 -- NEW Section 6.1.13 "Vertex Program Queries"

 "The commands

 void GetProgramParameterfvNV(enum target, uint index,
 enum pname, float *params);
 void GetProgramParameterdvNV(enum target, uint index,
 enum pname, double *params);

 obtain the current program parameters for the given program
 target and parameter index into the array params. target must
 be VERTEX_PROGRAM_NV. pname must be PROGRAM_PARAMETER_NV.
 The INVALID_VALUE error is generated if index is greater than 95.
 Each program parameter is an array of four values.

 The command

 void GetProgramivNV(uint id, enum pname, int *params);

 obtains program state named by pname for the program named id
 in the array params. pname must be one of PROGRAM_TARGET_NV,
 PROGRAM_LENGTH_NV, or PROGRAM_RESIDENT_NV. The INVALID_OPERATION
 error is generated if the program named id does not exist.

 The command

 void GetProgramStringNV(uint id, enum pname,
 ubyte *program);

 obtains the program string for program id. pname must be
 PROGRAM_STRING_NV. n ubytes are returned into the array program
 where n is the length of the program in ubytes. GetProgramivNV with
 PROGRAM_LENGTH_NV can be used to query the length of a program's
 string. The INVALID_OPERATION error is generated if the program
 named id does not exist.

 The command

 void GetTrackMatrixivNV(enum target, uint address,
 enum pname, int *params);

 obtains the matrix tracking state named by pname for the specified
 address in the array params. target must be VERTEX_PROGRAM_NV. pname
 must be either TRACK_MATRIX_NV or TRACK_MATRIX_TRANSFORM_NV. If the
 matrix tracked is a texture matrix, TEXTUREi_ARB is returned (never
 TEXTURE) where i indicates the texture unit of the particular tracked
 texture matrix. The INVALID_VALUE error is generated if address is
 not divisible by four and is not less than 96.

 The commands

 void GetVertexAttribdvNV(uint index, enum pname, double *params);

 2-55

 void GetVertexAttribfvNV(uint index, enum pname, float *params);
 void GetVertexAttribivNV(uint index, enum pname, int *params);

 obtain the vertex attribute state named by pname for the vertex
 attribute numbered index. pname must be one of ATTRIB_ARRAY_SIZE_NV,
 ATTRIB_ARRAY_STRIDE_NV, ATTRIB_ARRAY_TYPE_NV, or CURRENT_ATTRIB_NV.
 Note that all the queries except CURRENT_ATTRIB_NV return client
 state. The INVALID_VALUE error is generated if index is greater than
 15, or if index is zero and pname is CURRENT_ATTRIB_NV.

 The command

 void GetVertexAttribPointervNV(uint index,
 enum pname, void **pointer);

 obtains the pointer named pname in the array params for vertex
 attribute numbered index. pname must be ATTRIB_ARRAY_POINTER_NV.
 The INVALID_VALUE error is generated if index greater than 15.

 The command

 boolean IsProgramNV(uint id);

 returns TRUE if program is the name of a program object. If program
 is zero or is a non-zero value that is not the name of a program
 object, or if an error condition occurs, IsProgramNV returns FALSE.
 A name returned by GenProgramsNV but not yet loaded with a program
 is not the name of a program object."

 -- NEW Section 6.1.14 "Querying Current Matrix State"

 "Instead of providing distinct symbolic tokens for querying each
 matrix and matrix stack depth, the symbolic tokens CURRENT_MATRIX_NV
 and CURRENT_MATRIX_STACK_DEPTH_NV in conjunction with the GetBooleanv,
 GetIntegerv, GetFloatv, and GetDoublev return the respective state
 of the current matrix given the current matrix mode.

 Querying CURRENT_MATRIX_NV and CURRENT_MATRIX_STACK_DEPTH_NV is
 the only means for querying the matrix and matrix stack depth of
 the tracking matrices described in section 2.14.5."

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

 Add the following rule:

 "Rule X Vertex program and vertex state program instructions not
 relevant to the calculation of any result must have no effect on
 that result.

 Rules X+1 Vertex program and vertex state program instructions
 relevant to the calculation of any result must always produce the
 identical result. In particular, the same instruction with the same
 source inputs must produce the identical result whether executed by
 a vertex program or a vertex state program.

 Instructions relevant to the calculation of a result are any
 instructions in a sequence of instructions that eventually determine
 the source values for the calculation under consideration.

 There is no guaranteed invariance between vertices transformed by
 conventional GL vertex transform mode and vertices transformed by
 vertex program mode. Multi-pass rendering algorithms that require
 rendering invariances to operate correctly should not mix conventional

 2-56

 GL vertex transform mode with vertex program mode for different
 rendering passes. However such algorithms will operate correctly
 if the algorithms limit themselves to a single mode of vertex
 transformation."

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share display lists. No change
 is made to the AGL/GLX/WGL API.

Dependencies on EXT_vertex_weighting

 If the EXT_vertex_weighting extension is not supported, there is no
 aliasing between vertex attribute 1 and the current vertex weight.
 Replace the contents of the last three columns in row 5 of table
 X.2 with dashes.

Dependencies on EXT_point_parameters

 When EXT_point_parameters is supported, the amended discussion
 of point size determination should be further amended with the
 language from the EXT_point_parameters specification though the point
 parameters functionality only applies when vertex program mode is
 disabled.

 Even if the EXT_point_parameters extension is not supported, the
 PSIZ vertex result register must operate as specified.

Dependencies on ARB_multitexture

 ARB_multitexture is required to support NV_vertex_program and the
 value of MAX_TEXTURE_UNITS_ARB must be at least 2. If more than 8
 texture units are supported, only the first 8 texture units can be
 assigned texture coordinates when vertex program mode is enabled.
 Texture units beyond 8 are implicitly disabled when vertex program
 mode is enabled.

Dependencies on EXT_fog_coord

 If the EXT_fog_coord extension is not supported, there is no
 aliasing between vertex attribute 5 and the current fog coordinate.
 Replace the contents of the last three columns in row 5 of table
 X.2 with dashes.

 Even if the EXT_fog_coord extension is not supported, the FOGC
 vertex result register must operate as specified. Note that the
 FOGC vertex result register behaves identically to the EXT_fog_coord
 extension's FOG_COORDINATE_SOURCE_EXT being FOG_COORDINATE_EXT.
 This means that the functionality of EXT_fog_coord is required to
 implement NV_vertex_program even if the EXT_fog_coord extension is
 not supported.

 If the EXT_fog_coord extension is supported, the state of
 FOG_COORDINATE_SOURCE_EXT only applies when vertex program mode is
 disabled and the discussion in section 3.10 is further amended by
 the discussion of FOG_COORDINATE_SOURCE_EXT in the EXT_fog_coord
 specification.

Dependencies on EXT_secondary_color

 If the EXT_secondary_color extension is not supported, there is no
 aliasing between vertex attribute 4 and the current secondary color.

 2-57

 Replace the contents of the last three columns in row 4 of table
 X.2 with dashes.

 Even if the EXT_secondary_color extension is not supported, the COL1
 and BFC1 vertex result registers must operate as specified.
 These vertex result registers are required to implement OpenGL 1.2's
 separate specular mode within a vertex program.

GLX Protocol

 Forty-five new GL commands are added.

 The following thirty-five rendering commands are sent to the sever
 as part of a glXRender request:

 BindProgramNV
 2 12 rendering command length
 2 4180 rendering command opcode
 4 ENUM target
 4 CARD32 id

 ExecuteProgramNV
 2 12+4*n rendering command length
 2 4181 rendering command opcode
 4 ENUM target
 0x8621 n=4 GL_VERTEX_STATE_PROGRAM_NV
 else n=0 command is erroneous
 4 CARD32 id
 4*n LISTofFLOAT32 params

 RequestResidentProgramsNV
 2 8+4*n rendering command length
 2 4182 rendering command opcode
 4 INT32 n
 n*4 CARD32 programs

 LoadProgramNV
 2 16+n+p rendering command length
 2 4183 rendering command opcode
 4 ENUM target
 4 CARD32 id
 4 INT32 len
 n LISTofCARD8 n
 p unused, p=pad(n)

 ProgramParameter4fvNV
 2 32 rendering command length
 2 4184 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramParameter4dvNV
 2 44 rendering command length
 2 4185 rendering command opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]

 2-58

 8 FLOAT64 params[3]

 ProgramParameters4fvNV
 2 16+16*n rendering command length
 2 4186 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 params

 ProgramParameters4dvNV
 2 16+32*n rendering command length
 2 4187 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 32*n FLOAT64 params

 TrackMatrixNV
 2 20 rendering command length
 2 4188 rendering command opcode
 4 ENUM target
 4 CARD32 address
 4 ENUM matrix
 4 ENUM transform

 VertexAttribPointerNV is an entirely client-side command

 VertexAttrib1svNV
 2 12 rendering command length
 2 4189 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 unused

 VertexAttrib2svNV
 2 12 rendering command length
 2 4190 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]

 VertexAttrib3svNV
 2 12 rendering command length
 2 4191 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 unused

 VertexAttrib4svNV
 2 12 rendering command length
 2 4192 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 INT16 v[3]

 VertexAttrib1fvNV
 2 12 rendering command length
 2 4193 rendering command opcode

 2-59

 4 CARD32 index
 4 FLOAT32 v[0]

 VertexAttrib2fvNV
 2 16 rendering command length
 2 4194 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]

 VertexAttrib3fvNV
 2 20 rendering command length
 2 4195 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]

 VertexAttrib4fvNV
 2 24 rendering command length
 2 4196 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]
 4 FLOAT32 v[3]

 VertexAttrib1dvNV
 2 16 rendering command length
 2 4197 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]

 VertexAttrib2dvNV
 2 24 rendering command length
 2 4198 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]

 VertexAttrib3dvNV
 2 32 rendering command length
 2 4199 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]

 VertexAttrib4dvNV
 2 40 rendering command length
 2 4200 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]
 8 FLOAT64 v[3]

 VertexAttrib4ubvNV
 2 12 rendering command length
 2 4201 rendering command opcode
 4 CARD32 index
 1 CARD8 v[0]
 1 CARD8 v[1]

 2-60

 1 CARD8 v[2]
 1 CARD8 v[3]

 VertexAttribs1svNV
 2 12+2*n+p rendering command length
 2 4202 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 2*n INT16 v
 p unused, p=pad(2*n)

 VertexAttribs2svNV
 2 12+4*n rendering command length
 2 4203 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n INT16 v

 VertexAttribs3svNV
 2 12+6*n+p rendering command length
 2 4204 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 6*n INT16 v
 p unused, p=pad(6*n)

 VertexAttribs4svNV
 2 12+8*n rendering command length
 2 4205 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n INT16 v

 VertexAttribs1fvNV
 2 12+4*n rendering command length
 2 4206 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n FLOAT32 v

 VertexAttribs2fvNV
 2 12+8*n rendering command length
 2 4207 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n FLOAT32 v

 VertexAttribs3fvNV
 2 12+12*n rendering command length
 2 4208 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 12*n FLOAT32 v

 VertexAttribs4fvNV
 2 12+16*n rendering command length
 2 4209 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 v

 VertexAttribs1dvNV
 2 12+8*n rendering command length

 2-61

 2 4210 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n FLOAT64 v

 VertexAttribs2dvNV
 2 12+16*n rendering command length
 2 4211 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT64 v

 VertexAttribs3dvNV
 2 12+24*n rendering command length
 2 4212 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 24*n FLOAT64 v

 VertexAttribs4dvNV
 2 12+32*n rendering command length
 2 4213 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 32*n FLOAT64 v

 VertexAttribs4ubvNV
 2 12+4*n rendering command length
 2 4214 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n CARD8 v

 The remaining twelve commands are non-rendering commands. These commands
 are sent separately (i.e., not as part of a glXRender or glXRenderLarge
 request), using the glXVendorPrivateWithReply request:

 AreProgramsResidentNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request length
 4 1293 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 4 BOOL32 return value
 20 unused
 n LISTofBOOL programs
 p unused, p=pad(n)

 DeleteProgramsNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request length
 4 1294 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs

 2-62

 GenProgramsNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 1295 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 n reply length
 24 unused
 n*4 LISTofCARD322 programs

 GetProgramParameterfvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1296 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetProgramParameterdvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1297 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 FLOAT64 params

 2-63

 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

 GetProgramivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1298 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetProgramStringNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1299 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 4 unused
 4 CARD32 n
 16 unused
 n STRING program
 p unused, p=pad(n)

 GetTrackMatrixivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1300 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 address
 4 ENUM pname
 =>
 1 1 reply

 2-64

 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 Note that ATTRIB_ARRAY_SIZE_NV, ATTRIB_ARRAY_STRIDE_NV, and
 ATTRIB_ARRAY_TYPE_NV may be queried by GetVertexAttribNV but
 return client-side state.

 GetVertexAttribdvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1301 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

 GetVertexAttribfvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1302 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 2-65

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetVertexAttribivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1303 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetVertexAttribPointervNV is an entirely client-side command

 IsProgramNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 1304 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 BOOL32 return value
 20 unused

Errors

 The error INVALID_VALUE is generated if VertexAttribNV is called
 where index is greater than 15.

 The error INVALID_VALUE is generated if any ProgramParameterNV has
 an index is greater than 95.

 The error INVALID_VALUE is generated if VertexAttribPointerNV
 is called where index is greater than 15.

 2-66

 The error INVALID_VALUE is generated if VertexAttribPointerNV
 is called where size is not one of 1, 2, 3, or 4.

 The error INVALID_VALUE is generated if VertexAttribPointerNV
 is called where stride is negative.

 The error INVALID_OPERATION is generated if VertexAttribPointerNV
 is called where type is UNSIGNED_BYTE and size is not 4.

 The error INVALID_VALUE is generated if LoadProgramNV is used to load a
 program with an id of zero.

 The error INVALID_OPERATION is generated if LoadProgramNV is used
 to load an id that is currently loaded with a program of a different
 program target.

 The error INVALID_OPERATION is generated if the program passed to
 LoadProgramNV fails to load because it is not syntactically correct
 based on the specified target. The value of PROGRAM_ERROR_POSITION_NV
 is still updated when this error is generated.

 The error INVALID_OPERATION is generated if LoadProgramNV has a
 target of VERTEX_PROGRAM_NV and the specified program fails to
 load because it does not write the HPOS register at least once.
 The value of PROGRAM_ERROR_POSITION_NV is still updated when this
 error is generated.

 The error INVALID_OPERATION is generated if LoadProgramNV has a target
 of VERTEX_STATE_PROGRAM_NV and the specified program fails to load
 because it does not write at least one program parameter register.
 The value of PROGRAM_ERROR_POSITION_NV is still updated when this
 error is generated.

 The error INVALID_OPERATION is generated if the vertex program
 or vertex state program passed to LoadProgramNV fails to load
 because it contains more than 128 instructions. The value of
 PROGRAM_ERROR_POSITION_NV is still updated when this error is
 generated.

 The error INVALID_OPERATION is generated if a program is loaded with
 LoadProgramNV for id when id is currently loaded with a program of
 a different target.

 The error INVALID_OPERATION is generated if BindProgramNV attempts
 to bind to a program name that is not a vertex program (for example,
 if the program is a vertex state program).

 The error INVALID_VALUE is generated if GenProgramsNV is called
 where n is negative.

 The error INVALID_VALUE is generated if AreProgramsResidentNV is
 called and any of the queried programs are zero or do not exist.

 The error INVALID_OPERATION is generated if ExecuteProgramNV executes
 a program that does not exist.

 The error INVALID_OPERATION is generated if ExecuteProgramNV executes
 a program that is not a vertex state program.

 The error INVALID_OPERATION is generated if Begin, RasterPos, or a
 command that performs an explicit Begin is called when vertex program
 mode is enabled and the currently bound vertex program writes program
 parameters that are currently being tracked.

 2-67

 The error INVALID_OPERATION is generated if ExecuteProgramNV is called
 and the vertex state program to execute writes program parameters
 that are currently being tracked.

 The error INVALID_VALUE is generated if TrackMatrixNV has a target
 of VERTEX_PROGRAM_NV and attempts to track an address is not a
 multiple of four.

 The error INVALID_VALUE is generated if GetProgramParameterNV is
 called to query an index greater than 95.

 The error INVALID_VALUE is generated if GetVertexAttribNV is called
 to query an <index> greater than 15, or if <index> is zero and <pname>
 is CURRENT_ATTRIB_NV.

 The error INVALID_VALUE is generated if GetVertexAttribPointervNV
 is called to query an index greater than 15.

 The error INVALID_OPERATION is generated if GetProgramivNV is called
 and the program named id does not exist.

 The error INVALID_OPERATION is generated if GetProgramStringNV is called
 and the program named <program> does not exist.

 The error INVALID_VALUE is generated if GetTrackMatrixivNV is called
 with an <address> that is not divisible by four and not less than 96.

 The error INVALID_VALUE is generated if AreProgramsResidentNV,
 DeleteProgramsNV, GenProgramsNV, or RequestResidentProgramsNV are
 called where <n> is negative.

 The error INVALID_VALUE is generated if LoadProgramNV is called
 where <len> is negative.

 The error INVALID_VALUE is generated if ProgramParameters4dvNV or
 ProgramParameters4fvNV are called where <count> is negative.

 The error INVALID_VALUE is generated if
 VertexAttribs{1,2,3,4}{d,f,s}vNV is called where <count> is negative.

New State

update table 6.22 (page 212) so that all the "9"s are "25"s because there
are 9 conventional map targets and 16 vertex attribute map targets making
a total of 25.

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------------- ------ --------------------------- ------------- ------------------ -------- ------------
VERTEX_PROGRAM_NV B IsEnabled False vertex program 2.10 enable
 enable
VERTEX_PROGRAM_POINT_SIZE_NV B IsEnabled False program-specified 2.14.1.5 enable
 point size mode
VERTEX_PROGRAM_TWO_SIDE_NV B IsEnabled False two-sided color 2.14.1.5 enable
 mode
PROGRAM_ERROR_POSITION_NV Z GetIntegerv -1 last program 2.14.1.7 -
 error position
PROGRAM_PARAMETER_NV 96xR4 GetProgramParameterNV (0,0,0,0) program parameters 2.14.1.2 -
CURRENT_ATTRIB_NV 16xR4 GetVertexAttribNV see 2.14.6 vertex attributes 2.14.1.1 current
 but zero cannot be queried,
 aliased with per-vertex
 parameters
TRACK_MATRIX_NV 24xZ8+ GetTrackMatrixivNV NONE track matrix 2.14.5 -
TRACK_MATRIX_TRANSFORM_NV 24xZ8+ GetTrackMatrixivNV IDENTITY_NV track matrix 2.14.5 -
 transform
VERTEX_PROGRAM_BINDING_NV Z+ GetIntegerv 0 bound vertex 2.14.1.8 -
 program
VERTEX_ATTRIB_ARRAYn_NV 16xB IsEnabled False vertex attrib 2.14.3 vertex-array
 array enable
ATTRIB_ARRAY_SIZE_NV 16xZ GetVertexAttribNV 4 vertex attrib 2.14.3 vertex-array
 array size

 2-68

ATTRIB_ARRAY_STRIDE_NV 16xZ+ GetVertexAttribNV 0 vertex attrib 2.14.3 vertex-array
 array stride
ATTRIB_ARRAY_TYPE_NV 16xZ4 GetVertexAttribNV FLOAT vertex attrib 2.14.3 vertex-array
 array type

Table X.5. New State Introduced by NV_vertex_program.

Get Value Type Get Command Initial Value Description Sec Attribute
------------------- ------ ------------------ ------------- ------------------ -------- ---------
PROGRAM_TARGET_NV Z2 GetProgramivNV 0 program target 6.1.13 -
PROGRAM_LENGTH_NV Z+ GetProgramivNV 0 program length 6.1.13 -
PROGRAM_RESIDENT_NV Z2 GetProgramivNV False program residency 6.1.13 -
PROGRAM_STRING_NV ubxn GetProgramStringNV "" program string 6.1.13 -

Table X.6. Program Object State.

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ------ ----------- ------------- ----------------------- -------- ---------
- 12xR4 - (0,0,0,0) temporary registers 2.14.1.4 -
- 15xR4 - (0,0,0,1) vertex result registers 2.14.1.4 -
 Z4 - (0,0,0,0) vertex program 2.14.1.3 -
 address register

Table X.7. Vertex Program Per-vertex Execution State.

Get Value Type Get Command Initial Value Description Sec Attribute
----------------------------- -------- -------------- ------------- ------------------- ------- ---------
CURRENT_MATRIX_STACK_DEPTH_NV m*Z+ GetIntegerv 1 current stack depth 6.1.14 -
CURRENT_MATRIX_NV m*n*xM^4 GetFloatv Identity current matrix 6.1.14 -

Table X.8. Current matrix state where m is the total number of matrices
including texture matrices and tracking matrices and n is the number of
matrices on each particular matrix stack. Note that this state is
aliased with existing matrix state.

New Implementation Dependent State
 Minimum
Get Value Type Get Command Value Description Sec Attribute
-------------------------------- ---- ----------- ---------- ------------------ ------ ---------
MAX_TRACK_MATRIX_STACK_DEPTH_NV Z+ GetIntegerv 1 maximum tracking 2.14.5 -
 matrix stack depth
MAX_TRACK_MATRICES_NV Z+ GetIntegerv 8 (not to maximum number of 2.14.5 -
 exceed 32) tracking matrices

Table X.9. New Implementation-Dependent Values Introduced by NV_vertex_program.

Revision History

 Version 1.1:

 Added normalization example to Issues.

 Fix explanation of EXP and ARL floor equivalence.

 Clarify that vertex state programs fail if they load more than
 one vertex attribute (though only one is possible).

 Version 1.2

 Add GLX protocol for VertexAttrib4ubvNV and VertexAttribs4ubvNV

 Add issue about TrackMatrixNV transform behavior with example

 Fix the C code specifying VertexAttribsvNV

 Version 1.3

 Dropped support for INT typed vertex attrib arrays.

 Clarify that when ArrayElement is executed and vertex program
 mode is enabled and the vertex attrib 0 array is enabled, the
 vertex attrib 0 array command is executed last. However when
 ArrayElement is executed and vertex program mode is enabled and the
 vertex attrib 0 array is disabled and the vertex array is enabled,
 the vertex array command is executed last.

 2-69

 Version 1.4

 Allow TEXTUREi_ARB for the track matrix. This allows matrix
 tracking of a particular texture matrix without reference to active
 texture (set by glActiveTextureARB) state.

 Early NVIDIA drivers (prior to October 5, 2001) have a bug
 in their handling of tracking matrices specified with TEXTURE.
 Rather than tracking the particular texture matrix indicated
 by the active texture state when TrackMatrixNV is called, these
 early drivers incorrectly track matrix the active texture's texture
 matrix _at track matrix validation time_. In practice this means,
 every tracked matrix defined with TEXTURE tracks the same matrix
 values; you cannot track distinct texture matrices at the same
 time and the texture matrix you actually track depends on the
 active texture matrix at validation time. This is a driver bug.

 Drivers after October 5, 2001 properly track the texture matrix
 specified by active texture when TrackMatrix is called.

 The new correct drivers can be distinguished from the old drivers
 at run time with the following code:

 while (glGetError() != GL_NO_ERROR); // Clear any pre-existing OpenGL errors.
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 8, GL_TEXTURE0_ARB, GL_IDENTITY_NV);
 if (glGetError() != GL_NO_ERROR) {
 // Old buggy pre-version 1.4 drivers with GL_TEXTURE
 // glTrackMatrixNV bug.
 } else {
 // Correct new version 1.4 drivers (or later) with GL_TEXTURE
 // glTrackMatrixNV bug fixed and GL_TEXTUREi_NV support.

 // Note: you may want to untrack the matrix at this point.
 }

 Version 1.5

 Earlier versions of this specification claimed for
 GetVertexAttribARB that it is an error to query any vertex attrib
 state for vertex attrib array zero. In fact, it should only be
 an error to query the CURRENT_ATTRIB_ARB state for vertex attrib
 zero; the size, stride, and type of vertex attrib array zero may
 be queried. Version 1.5 specifies the correct behavior.

 Early NVIDIA drivers (prior to January 11, 2002) did not implement
 generate error when querying vertex attrib array zero state (ie,
 did the right thing for size, stride, and type) but not create an
 error when querying the current attribute values for vertex attrib
 array zero either.

 Version 1.6

 GLX opcodes and vendorpriv values assigned.

Chapter 3

ATI
Jason L. Mitchell

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 1

Pixel Shading with DirectX 8.1

and the ATI RADEON� 8500

Jason L. Mitchell

JasonM@ati.com

3D Application Research Group

ATI Research

Introduction

Programmable shaders are a powerful way to describe the interaction of surfaces with light, as

evidenced by the success of programmable shading models like RenderMan and others. As graphics

hardware evolves beyond the traditional �fixed function� pipeline, hardware designers are looking to

programmable models to empower the next generation of real-time content. To allow content to

interface with current programmable pixel shading hardware, we have designed the 1.4 pixel shader

model (ps.1.4) exposed in DirectX 8.1 and supported by the ATI RADEON� 8500. In these notes, we

will outline the structure of the programming model and present some illustrative examples. In the

companion notes distributed at SIGGRAPH, we will show implementations of the common example

shaders used throughout this course (bumped cubic environment mapping, McCool BRDF and

parameterized volumetric wood) as well as a new programming model which goes beyond ps.1.4. Soft

copies of these notes and the supplemental material distributed at SIGGRAPH 2002 are available at

http://www.ati.com/developer.

The ps.1.4 Programming Model

 The 1.4 pixel shader programming model (ps.1.4), introduced in DirectX 8.1 in late 2001,

advances the previously available programming model by applying a RISC approach. That is, the same

micro operations which can be applied to colors can also be applied to texture addresses. This allows a

wider variety of pixel shading affects to be achieved, as well as backward compatibility with previously

available CISC models.

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 2

Inputs and Outputs

 The pixel shader may take as inputs the data from interpolated texture coordinates, samples from

texture maps, constant colors, the diffuse interpolator or the specular interpolator. There are six sets of

texture coordinates (t0-t5), which may be used as extra interpolated data or as texture coordinates for

sampling texture maps. There are six texture maps available in the ps.1.4 model and eight read-only

constant registers (c0-c7). The low-precision diffuse (v0) and specular (v1) interpolators may also be

used as arguments to ALU operations. There are six read-write temp registers (r0-r5) available in the

ps.1.4 model. The contents of the r0 temp register are considered the RGBA output of the pixel shader.

Shader Structure

 A ps.1.4 shader may contain one or two phases, each of which begins with up to 6 texture

instructions and ends with up to 8 ALU instructions. Each of the ALU instructions may be co-issued.

 ps.1.4
 texld r0, t0
 texld r1, t1
 texcrd r2.rgb, t2
 texcrd r3.rgb, t3
 texcrd r4.rgb, t4
 texcrd r5.rgb, t5

 add_d4 r0.xy, r0_bx2, r1_bx2
 mul r1.rgb, r0.x, r3
 mad r1.rgb, r0.y, r4, r1
 mad r1.rgb, r0.z, r5, r1
 dp3 r0.rgb, r1, r2
 mad r2.rgb, r1, r0_x2, -r2
 mov_sat r1, r0_x2

 phase

 texcrd r0.rgb, r0
 texld r2, r2
 texld r3, r1

 mul r2.rgb, r2, r2
+mul r2.a, r2.g, r2.g
 mul r2.rgb, r2, 1-r0.r
+mul r2.a, r2.a, r2.a
 add_d4_sat r2.rgb, r2, r3_x2
+mul r2.a, r2.a, r2.a
 mad_sat r0, r2.a, c1, r2

Texture Instructions

Texture Instructions

ALU Instructions

ALU Instructions

First Phase

Second Phase

 The shader shown above has two phases. The first phase uses six texture instructions (the

maximum) and 7 ALU instructions. The second phase uses three texture instructions (two of which are

dependent reads) and 4 ALU instructions (the first three of which are co-issued). The phase instruction

marks the boundary between the phases.

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 3

ALU Instructions

 The instruction set available for ALU operations is a fairly traditional set of arithmetic

operations and comparators as listed below.

add d, s0, s1 s0 + s1
sub d, s0, s1 s0 � s1
mul d, s0, s1 s0 * s1
mad d, s0, s1, s2 s0 * s1 + s2
lrp d, s0, s1, s2 s2 + s0*(s1-s2)
mov d, s0 d = s0
cnd d, s0, s1, s2 d = (s2 > 0.5) ? s0 : s1
cmp d, s0, s1, s2 d = (s2 >= 0) ? s0 : s1
dp3 d, s0, s1 s0·s1 replicated to d.rgba
dp4 d, s0, s1 s0·s1 replicated to d.rgba
bem d, s0, s1, s2 Macro for EMBM

 The inputs to the ALU instructions may be any of the temporary registers (r0-r5) or constant

registers (c0-c7). The diffuse interpolator (v0) and specular interpolator (v1) may be inputs to ALU

instructions in the second phase of the shader.

Argument Modifiers

 As shown in the sample shader on the previous page, arguments to ALU instructions may have

modifications made to them prior to the operation of the ALU instruction. There are five argument

modifiers which can be used to perform operations such as negation, inversion, scaling and conversion

from the [0..1] range to the [-1..1] range.

rn_bias Bias
1 � rn Invert
-rn Negate
rn_x2 Scale by 2
rn_bx2 Signed Scaling

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 4

Source Register Selectors

 It is often useful to think of the individual components of an RGBA vector as independent

scalars. With source register selectors, it is possible to extract these scalars from an argument register

and replicate them across all channels of the argument. The four source register selectors are shown

below.

.r Replicate Red

.g Replicate Green

.b Replicate Blue

.a Replicate Alpha

Arbitrary Write Masks

 It is often desirable to write to only a subset of the channels of a destination register. In ps.1.4,

destination write masks can be used in any combination as long as the masks are ordered r, g, b, a. This

allows the shader to execute a sequence of ALU operations which write to different components of the

same destination register. This is especially useful when computing texture coordinates to be used in

dependent texture reads, as we will illustrate later.

Instruction Modifiers

 In some cases, we wish to modify the result of an ALU instruction as it is written into the

destination register. In the ps.1.4 model, we can use instruction modifiers to perform shifts and saturates

on the results of ALU operations. There are six shift (multiplier or divider, depending on the direction

of the shift) operations that we can perform. Additionally, ALU results may be explicitly saturated to

the [0..1] range. Saturation and shifting may be performed on the same ALU instruction.

instr_x2 Multiply by 2
instr_x4 Multiply by 4
instr_x8 Multiply by 8
instr_d2 Divide by 2
instr_d4 Divide by 4
instr_d8 Divide by 8
instr_sat Saturate (clamp from 0 and 1)

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 5

Co-Issue

Pairing or co-issuing of ps.1.4 instructions is indicated by a plus sign (+) preceding the second

instruction of the pair. The first instruction of the pair is a vector instruction which may write to any or

all of r, g and b of the destination register. The second instruction of the pair is a scalar which writes

into the alpha channel of the destination register. As an example, consider the following instructions:

 mul r0.rgb, t0, v0 // Component-wise multiply of the colors
 +add r1.a, r1, c2 // Add an alpha component at the same time

The dot product instructions may not be executed in the alpha pipeline, as they are always vector

instructions.

Texture Instructions

 The two most common texture instructions are the texcrd and texld instructions. The texcrd

instruction is used to specify that a given temporary register (r0-r5) is to contain interpolated data. The

texld instruction uses the specified texture coordinates to sample data from a texture map into the

destination register. For example, the following texcrd instruction causes r0 to contain interpolated

data from the 0 set of texture coordinates:
th

texcrd r0.rgb, t0

The following texld instruction causes r1 to contain sampled data from the 1
st
 texture using the

1
st
 set of texture coordinates:

texld r1, t1

The following texld instruction causes r2 to be loaded with sampled data from the 2 texture

using the contents of r3 as texture coordinates:

nd

texld r2, r3

Using the contents of a temporary register as texture coordinates (the second argument of a

texld instruction) is the definition of a dependent read because these texture coordinates depend upon

the earlier ALU ops used to compute them (in this case r3). Naturally, a dependent read can only be

used at the top of the second phase.

The texkill instruction can be used to kill pixels based upon results computed in a pixel shader.

This is similar to alpha-testing, but more general in that multiple conditions may be tested with the

texkill instruction. Multiple texkill instructions may appear in a single shader.

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 6

The final texture instruction is the texdepth instruction, which causes the current pixel�s z to be

replaced with the contents of a given register component. This instruction can be used to implement z-

sprites, z-correct bump mapping and other effects. Naturally, only one texdepth instruction may be

present in a given pixel shader.

Texture Projection

 Any texld instruction may be modified to express a projected texture access. This includes

projective dependent reads, which are fundamental to doing reflection and refraction mapping of things

like water surfaces. Syntax looks like this:

 texld r3, r3_dz or
 texld r3, r3_dw

 Projective loads are useful for projective textures like refraction maps or for doing a divide, as

we will show later in the skin shader [Vlachos02].

Example ps.1.4 Shaders

 Now that we have introduced the structure and syntax of 1.4 pixel shaders, we will illustrate their

usage in a variety of practical applications.

Real-Time Hatching

 The first application of the 1.4 pixel shading model that we will illustrate is the Real-Time

Hatching technique shown at SIGGRAPH last year [Praun01]. The general goal of this pixel shader is

to compute the linear combination of 6 channels of a Tonal Art Map (TAM). The coefficients defining

this linear combination have been computed in the vertex shader as a function of N·L with respect to a

given light source and are stored in the r, g and b components of the 1 and 2 texture coordinates.
st nd

 ps.1.4
 texld r0, t0 ; sample the first three channels of the TAM
 texld r1, t0 ; sample the second three channels of the TAM
 texcrd r2.rgb, t1.xyz ; get the 123 TAM weights and place in register 2
 texcrd r3.rgb, t2.xyz ; get the 456 TAM weights and place in register 3
 dp3_sat r0, 1-r0, r2 ; dot the reg0 (TAM values) with reg2 (TAM weights)
 dp3_sat r1, 1-r1, r3 ; dot the reg1 (TAM values) with reg3 (TAM weights)
 add_sat r0, r0, r1 ; add reg 0 and reg1
 mov_sat r0, 1-r0 ; complement and saturate

Real-Time Hatching with Per-Vertex TAM weights

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 7

 One side effect of this approach is inaccurate lighting due to the fact that the TAM weights are

computed at the vertices and interpolated. This can cause artifacts when the light source is close to a

large polygon. The two-polygon wall in the image on the left side of the figure below seems to have its

hatches grayed out as it transitions from the top right corner of near white, to the other corners which are

near black. The wall in the image on the right shows the effect of per-pixel TAM weights, correctly

transitioning between the intermediate hatching levels across the polygon.

 Per-Vertex TAM Weights Per-Pixel TAM Weights

Another dramatic improvement that can be made to the hatching shader is inclusion of a per-

pixel distance attenuation term as shown below.

 Per-Pixel Distance Attenuation and TAM weight computation

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 8

The improved shader interpolates N·L, modulates it with per-pixel distance attenuation and uses

this scalar as a texture coordinate to look up the per-pixel TAM weights. The two 1D RGB function

textures used to look up the TAM weights based on N·L are shown here:

 Two 1D RGB textures used to determine Per-Pixel TAM Weights from N· L

After computing the 6-term linear combination of hatching patterns in the TAM as before, the

color is tinted to match a base texture map color.

 ps.1.4
 def c0, 1.00f, 1.00f, 1.00f, 1.00f
 def c1, 0.30f, 0.59f, 0.11f, 0.00f ; RGB to luminance conversion weights

 texcrd r1.rgb, t2 ; N·L
 texld r4, t3 ; Intensity map looked up from light space position
 texld r5, t0 ; Base Texture

 mul_x2 r4, r4.r, r1.r ; N·L * attenuation
 add r4, r4, c2 ; += ambient
 dp3 r3, r5, c1 ; Intensity of base map
 mul r5, r4, r5 ; Modulate base map by light
 mul r4, r4, r3 ; Modulate light by base map intensity

 phase

 texld r0, t1 ; sample the first three channels of the TAM
 texld r1, t1 ; sample the second three channels of the TAM
 texld r2, r4 ; Get weights for 123
 texld r3, r4 ; Get weights for 456

 dp3_sat r0, 1-r0, r2 ; dot the reg0 (TAM values) with reg2 (TAM weights)
 dp3_sat r1, 1-r1, r3 ; dot the reg1 (TAM values) with reg3 (TAM weights)
 add_sat r0, r0, r1 ; add reg0 and reg1
 mul r0.rgb, 1-r5, r0 ; Color hatches with base texture
 mov_sat r0, 1-r0 ; complement and saturate

Real-Time Hatching with Per-Pixel TAM weights, distance attenuation and color tinting

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 9

Per-pixel Variable Specular power

 In the preceding example, we have illustrated the ability to migrate one type of per-vertex

computation (TAM weight calculation) to the pixel level in order to improve rendering quality. We will

now show how to implement per-pixel material properties (in this case, specular exponent) by using

arbitrary register write masks and dependent texture reads in ps.1.4. We will use three different texture

maps in this shader:

1. Albedo / Gloss map

2. Normal / k map

3. N·H × k map (function look up)

The first two of these maps are shown below. The images on the left are the RGB channels of

the maps and the images on the right are the alpha channels. In the first map, we store albedo and gloss

for the tile material. The second map stores the x, y and z components of the tangent-space normal in

RGB and the specular exponent (k) in alpha. Note that the artist has given each tile in this texture map a

different specular exponent to simulate neighboring tiles of disparate material properties. Being able to

simply paint the quantity k into a texture map channel is both convenient and empowering to an artist.

 Normals in RGB k in alpha

 Albedo in RGB Gloss in alpha

Material maps for per-pixel specular exponent shader

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 10

 The third texture we will use in this shader is a function lookup which will be used to raise N·H

to the k power via a dependent texture read. Each row of this 2D texture can be thought of as an

exponential function which is selected by the alpha channel of the Normal / k map shown above. In this

way, we are able to select different specular exponents for different regions within the same texture

map. For our purposes, we have found a dynamic range of 10 to 120 is reasonable for k:

th

1.0

10.0

120.0

k

N·H

0.0
 Function look-up map for per-pixel specular exponent shader

 In the shader code below, we sample the tangent space normal from the first map and dot this

quantity with interpolated L and H vectors. N·H is stored in the red channel of r2 and the specular

exponent is moved into the green channel using write masks. This 2D texture coordinate is then used to

access the function look-up map shown above via a dependent read. The instructions in the second

phase composite the results into a final color.

 ps.1.4
 texld r1, t0 ; Normal
 texld r2, t1 ; Cubic Normalized Tangent Space Light Direction
 texcrd r3.rgb, t2 ; Tangent Space Halfangle vector

 dp3_sat r5.xyz, r1_bx2, r2_bx2 ; N.L
 dp3_sat r2.xyz, r1_bx2, r3 ; N.H
 mov r2.y, r1.a ; K = Specular Exponent

 phase
 texld r0, t0 ; Base
 texld r3, r2 ; Specular NHxK map

 add r4.rgb, r5, c7 ; += ambient
 mul r0.rgb, r0, r4 ; base * (ambient + N.L))
 +mul_x2 r0.a, r0.a, r3.b ; Gloss map * specular highlight
 add r0.rgb, r0, r0.a ; (base*(ambient+N.L)) + (Gloss*Highlight)

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 11

 Output from this shader is shown on the right side of the figure below. The left side shows the

result of using the same normal map and a constant specular exponent for the whole object. The image

on the right shows how different materials can be represented with the same map by migrating material

calculations to the pixel level.

Constant specular power and per-pixel specular power using ps.1.4

Human Skin

The skin shader used in the Rachel demo uses nearly the maximum number of instructions to

implement per-pixel diffuse and specular illumination for two lights. The shader computes the

following equation to calculate the lighting per-pixel.

I = C (I + I (N · L) + I (N · L)) + gI (I |N · H | + I |N · H |)
k k

0 1 d0 0RGB base a d0 d1 s d1 1

where Cbase is the base color sampled from a texture map

Ia is the light source ambient coefficient

Idn are light source diffuse coefficients

Is is the light source specular coefficient

N is the normal to the surface

L is the light vector

H is the halfway vector

g is the gloss factor

k is the specular exponent.

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 12

A per-pixel variable specular exponent similar to the preceding example is used in this shader

but is further improved by using a dependent projective texture fetch as a way to perform a division

[Vlachos02].

 ps.1.4
 texld r0, t0
 texcrd r1.xyz, t3 // tangent space H0
 texcrd r2.xyz, t5 // tangent space H1
 dp3_sat r4.r, r0_bx2, r1 // N·H0
 dp3_sat r4.b, r1, r1 // H0·H0
 mul_sat r4.g, r4.b, c0.a // c0.a*(H0·H0)
 mul r4.r, r4.r, r4.r // (N·H0)

2
 dp3_sat r5.r, r0_bx2, r2 // N·H1
 dp3_sat r5.b, r2, r2 // H1·H1
 mul_sat r5.g, r5.b, c0.a // c0.a*(H1·H1)
 mul r5.r, r5.r, r5.r // (N·H1)

2
 phase
 texld r0, t0 // fetch again to get spec map to use as gloss
 texld r1, t0 // Cbase
 texld r2, t2 // tangent space L0
 texld r3, t4 // tangent space L1
 texld r4, r4_dz // ((N·H)2 /(H·H))k @= |N·H|k
 texld r5, r5_dz // ((N·H)2 /(H·H))k @= |N·H|k
 dp3_sat r2.r, r2_bx2, r0_bx2 // N·L0
 +mul r2.a, r0.a, r4.r // g * |N·H0|

k <- Gloss specular highlight 0
 dp3_sat r3.r, r3_bx2, r0_bx2 // N·L1
 +mul r3.a, r0.a, r5.r // g * |N·H1|

k <- Gloss specular highlight 1
 mul r0.rgb, r2.a, c2 // Id0*g*|N·H0|

k
 mad_x2 r0.rgb, r3.a, c3, r0 // Id0*g*|N·H0|

k + Id1*g*|N·H1|
k

 mad r2.rgb, r2.r, c2, c1 // Ia + Id0*(N·L)
 mad r2.rgb, r3.r, c3, r2 // Ia + Id0*(N·L) + Id1*(N·L)
 mul r0.rgb, r0, c4 // Is * (Id0*g*|N·H0|

k + Id1*g*|N·H1|
k)

 mad_x2_sat r0.rgb, r2, r1, r0 // Cbase * (Ia + Id0*(N·L) + Id1*(N·L))
 // + Id0*g*|N·H0|

k + Id1*g*|N·H1|
k

 +mov r0.a, c0.z

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 13

Conclusion

We�ve outlined the behavior of the 1.4 pixel shading model which is available in DirectX 8.1

and is implemented by the ATI RADEON� 8500. Three key examples have been presented to

illustrate the properties of this programming model and the effects that can be achieved today on

commodity graphics hardware.

References

[Praun01] Emil Praun, Hugues Hoppe, Matthew Webb and Adam Finkelstein, �Real-Time Hatching.�

Proceedings of SIGGRAPH 2001, pages 579-584.

[Vlachos02] Alex Vlachos, John Isidoro and Christopher Oat, �Textures as Lookup Tables for Per-Pixel

Lighting Computations,� in Game Programming Gems 3, Dante Treglia editor, 2002

Chapter 4

SGI
Marc Olano

Interactive Multi-Pass Programmable Shading

Mark S. Peercy, Marc Olano, John Airey
�
, P. Jeffrey Ungar

SGI

Abstract
Programmable shading is a common technique for production an-
imation, but interactive programmable shading is not yet widely
available. We support interactive programmable shading on vir-
tually any 3D graphics hardware using a scene graph library on
top of OpenGL. We treat the OpenGL architecture as a general
SIMD computer, and translate the high-level shading description
into OpenGL rendering passes. While our system uses OpenGL,
the techniques described are applicable to any retained mode in-
terface with appropriate extension mechanisms and hardware API
with provisions for recirculating data through the graphics pipeline.

We present two demonstrations of the method. The first is
a constrained shading language that runs on graphics hardware
supporting OpenGL 1.2 with a subset of the ARB imaging exten-
sions. We remove the shading language constraints by minimally
extending OpenGL. The key extensions are color range (support-
ing extended range and precision data types) and pixel texture (us-
ing framebuffer values as indices into texture maps). Our second
demonstration is a renderer supporting the RenderMan Interface
and RenderMan Shading Language on a software implementation
of this extended OpenGL. For both languages, our compiler tech-
nology can take advantage of extensions and performance charac-
teristics unique to any particular graphics hardware.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: Picture/Image generation; I.3.7 [Image Processing]: En-
hancement.

Keywords: Graphics Hardware, Graphics Systems, Illumina-
tion, Languages, Rendering, Interactive Rendering, Non-Realistic
Rendering, Multi-Pass Rendering, Programmable Shading, Proce-
dural Shading, Texture Synthesis, Texture Mapping, OpenGL.

1 INTRODUCTION
Programmable shading is a means for specifying the appearance of
objects in a synthetic scene. Programs in a special purpose lan-
guage, known as shaders, describe light source position and emis-
sion characteristics, color and reflective properties of surfaces, or
transmittance properties of atmospheric media. Conceptually, these
programs are executed for each point on an object as it is being ren-
dered to produce a final color (and perhaps opacity) as seen from
a given viewpoint. Shading languages can be quite general, having
�
Now at Intrinsic Graphics

constructs familiar from general purpose programming languages
such as C, including loops, conditionals, and functions. The most
common is the RenderMan Shading Language [32].

The power of shading languages for describing intricate light-
ing and shading computations been widely recognized since Cook’s
seminal shade tree research [7]. Programmable shading has played
a fundamental role in digital content creation for motion pictures
and television for over a decade. The high level of abstraction in
programmable shading enables artists, storytellers, and their techni-
cal collaborators to translate their creative visions into images more
easily. Shading languages are also used for visualization of scien-
tific data. Special data shaders have been developed to support the
depiction of volume data [3, 8], and a texture synthesis language has
been used for visualizing data fields on surfaces [9]. Image process-
ing scripting languages [22, 31] also share much in common with
programmable shading.

Despite its proven usefulness in software rendering, hardware
acceleration of programmable shading has remained elusive. Most
hardware supports a parametric appearance model, such as Phong
lighting evaluated per vertex, with one or more texture maps ap-
plied after Gouraud interpolation of the lighting results [29]. The
general computational nature of programmable shading, and the un-
bounded complexity of shaders, has kept it from being supported
widely in hardware. This paper describes a methodology to support
programmable shading in interactive visual computing by compil-
ing a shader into multiple passes through graphics hardware. We
demonstrate its use on current systems with a constrained shading
language, and we show how to support general shading languages
with only two hardware extensions.

1.1 Related Work
Interactive programmable shading, with dynamically changing
shader and scene, was demonstrated on the PixelFlow system [26].
PixelFlow has an array of general purpose processors that can ex-
ecute arbitrary code at every pixel. Shaders written in a language
based on RenderMan’s are translated into C++ programs with em-
bedded machine code directives for the pixel processors. An appli-
cation accesses shaders through a programmable interface exten-
sion to OpenGL. The primary disadvantages of this approach are
the additional burden it places on the graphics hardware and driver
software. Every system that supports a built-in programmable in-
terface must include powerful enough general computing units to
execute the programmable shaders. Limitations to these computing
units, such as a fixed local memory, will either limit the shaders
that may be run, have a severe impact on performance, or cause the
system to revert to multiple passes within the driver. Further, ev-
ery such system will have a unique shading language compiler as
part of the driver software. This is a sophisticated piece of software
which greatly increases the complexity of the driver.

Our approach to programmable shading stands in contrast to
the programmable hardware method. Its inspiration is a long line of
interactive algorithms that follow a general theme: treat the graph-
ics hardware as a collection of primitive operations that can be used

4 - 1

to build up a final solution in multiple passes. Early examples of this
model include multi-pass shadows, planar reflections, highlights on
top of texture, depth of field, and light maps [2, 10]. There has been
a dramatic surge of research in this area over the past few years.
Sophisticated appearance computations, which had previously been
available only in software renderers, have been mapped to generic
graphics hardware. For example, lighting per pixel, general bidi-
rectional reflectance distribution functions, and bump mapping now
run in real-time on hardware that supports none of those effects na-
tively [6, 17, 20, 24].

Consumer games like ID Software’s Quake 3 make extensive
use of multi-pass effects [19]. Quake 3 recognizes that multi-pass
provides a flexible method for surface design and takes the impor-
tant step of providing a scripting mechanism for rendering passes,
including control of OpenGL blending mode, alpha test functions,
and vertex texture coordinate assignment. In its current form, this
scripting language does not provide access to all of the OpenGL
state necessary to treat OpenGL as a general SIMD machine.

A team at Stanford has been investigating real-time pro-
grammable shading. Their focus is a framework and language that
explicitly divides operations into those that are executed at the ver-
tex processing stage in the graphics pipeline and those that are exe-
cuted at the fragment processing stage [25].

The hardware in all of these cases is being used as a com-
puting machine rather than a special purpose accelerator. Indeed,
graphics hardware has been used to accelerate techniques such as
back-projection for tomographic reconstruction [5] and radiosity
approximations [21]. It is now recognized that some new hardware
features, such as multi-texture [24, 29], pixel texture [17], and color
matrix [23], are particularly valuable for supporting these advanced
computations interactively.

1.2 Our Contribution
In this paper, we embrace and extend previous multi-pass tech-
niques. We treat the OpenGL architecture as a SIMD computer.
OpenGL acts as an assembly language for shader execution. The
challenge, then, is to convert a shader into an efficient set of
OpenGL rendering passes on a given system. We introduce a com-
piler between the application and the graphics library that can target
shaders to different hardware implementations.

This philosophy of placing the shading compiler above the
graphics API is at the core of our work, and has a number of
advantages. We believe the number of languages for interactive
programmable shading will grow and evolve over the next sev-
eral years, responding to the unique performance and feature de-
mands of different application areas. Likewise, hardware will in-
crease in performance and many new features will be introduced.
Our methodology allows the languages, compiler, and hardware to
evolve independently because they are cleanly decoupled.

This paper has three main contributions. First, we formalize
the idea of using OpenGL as an assembly language into which pro-
grammable shaders are translated, and we show how to apply dy-
namic tree-rewriting compiler technology to optimize the mapping
between shading languages and OpenGL (Section 2). Second, we
demonstrate the immediate application of this approach by intro-
ducing a constrained shading language that runs interactively on
most current hardware systems (Section 3). Third, we describe the
color range and pixel texture OpenGL extensions that are neces-
sary and sufficient to accelerate fully general shading languages
(Section 4). As a demonstration of the viability of this solution,
we present a complete RenderMan renderer including full support
of the RenderMan Shading Language running on a software im-

Vertex Operations (transforms,
tex coord generation, lighting)

Texture Memory

Pixel Operations (lookup table,
 color matrix, minmax)

Rasterization (color
interpolation, texturing, fog)

Fragment Operations (depth,
alpha test, stencil, blending) Framebuffer

Figure 1: A simplified block diagram of the OpenGL archi-
tecture. Geometric data passes through the vertex oper-
ations, rasterization, and fragment operations to the frame-
buffer. Pixel data (either from the host or the framebuffer)
passes through the pixel operations and on to either texture
memory or through the fragment pipeline to the framebuffer.

plementation of this extended OpenGL. We close the paper with a
discussion (Section 5) and conclusion (Section 6).

2 THE SHADING FRAMEWORK
There is great diversity in modern 3D graphics hardware. Each
graphics system includes unique features and performance charac-
teristics. Countering this diversity, all modern graphics hardware
also supports the basic features of the OpenGL API standard.

While it is possible to add shading extensions to graphics hard-
ware, OpenGL is powerful enough to support shading with no ex-
tensions at all. Building programmable shading on top of standard
OpenGL decouples the hardware and drivers from the language,
and enables shading on every existing and future OpenGL-based
graphics system.

A compiler turns shading computations into multiple passes
through the OpenGL rendering pipeline (Figure 1). This compiler
can produce a general set of rendering passes, or it can use knowl-
edge of the target hardware to pick an optimized set of passes.

2.1 OpenGL as an Assembly Language
One key observation allows shaders to be translated into multi-pass
OpenGL: a single rendering pass is also a general SIMD instruction
— the same operations are performed simultaneously for all pixels
in an object. At the simplest level, the framebuffer is an accumu-
lator, texture or pixel buffers serve as per-pixel memory storage,
blending provides basic arithmetic operations, lookup tables sup-
port function evaluation, the alpha test provides a variety of con-
ditionals, and the stencil buffer allows pixel-level conditional exe-
cution. A shader computation is broken into pieces, each of which
can be evaluated by an OpenGL rendering pass. In this way, we
build up a final result for all pixels in an object (Figure 2). There
are typically several ways to map shading operations into OpenGL.
We have implemented the following:

Data Types: Data with the same value for every pixel in an ob-
ject are called uniform, while data with values that may vary from
pixel to pixel are called varying. Uniform data types are handled
outside the graphics pipeline. The framebuffer retains intermediate
varying results. Its four channels may hold one quadruple (such as
a homogeneous point), one triple (such as a vector, normal, point,
or color) and one scalar, or four independent scalars. We have made
no attempt to handle varying data types with more than four chan-
nels. The framebuffer channels (and hence independent scalars or

4 - 2

#include "marble.h"

surface marble()
{
 varying color a;
 uniform string tx;
 uniform float x; x = 1/2;

 tx = "noisebw.tx";

 FB = texture(tx,scale(x,x,x));
 repeat(3) {
 x = x*.5;
 FB *= .5;
 FB += texture(tx,scale(x,x,x));
 }
 FB = lookup(FB,tab);

 a = FB;
 FB = diffuse;
 FB *= a;
 FB += environment("env");
}

Figure 2: SIMD Computation of a Shader. Some of the different
passes for the shader written in ISL listed on the left are shown
as thumbnails down the right column. The result of the com-
plete shader is shown on the lower left.

the components of triples and quadruples) can be updated selec-
tively on each pass by setting the write-mask with glColorMask.

Variables: Varying global, local, and temporary variables
are transferred from the framebuffer to a named texture using
glCopyTexSubImage2D, which copies a portion of the frame-
buffer into a portion of a texture. In our system, these textures can
be one channel (intensity) or four channels (RGBA), depending on
the data type they hold. Variables are used either by drawing a tex-
tured copy of the object bounding box or by drawing the object ge-
ometry using a projective texture. The relative speed of these two
methods will vary from graphics system to graphics system. In-
tensity textures holding scalar variables are expanded into all four
channels during rasterization and can therefore be restored into any
framebuffer channel.

Arithmetic Operations: Most arithmetic operations are per-
formed with framebuffer blending. They have two operands: the
framebuffer contents and an incoming fragment. The incom-
ing fragment may be produced either by drawing geometry (ob-
ject color, a texture, a stored variable, etc.) or by copying pix-
els from the framebuffer and through the pixel operations with
glCopyPixels. Data can be permuted (swizzled) from one
framebuffer channel to another or linearly combined more gen-
erally using the color matrix during a copy. The framebuffer
blending mode, set by glBlendEquation, glBlendFunc,
and glLogicOp, supports overwriting, addition, subtraction, mul-
tiplication, bit-wise logical operations, and alpha blending. Unex-
tended OpenGL does not have a divide blend mode. We handle di-
vide using multiplication by the reciprocal. The reciprocal is com-
puted like other mathematical functions (see below). More com-
plicated binary operations are reduced to a combination of these
primitive operations. For example, a dot product of two vectors is

a component-wise multiplication followed by a pixel copy with a
color matrix that sums the resulting three components together.

Mathematical and Shader Functions: Mathematical func-
tions with a single scalar operand (e.g. sin or reciprocal) use color
or texture lookup tables during a framebuffer-to-framebuffer pixel
copy. Functions with more than one operand (e.g. atan2) or a sin-
gle vector operand (e.g. normalize or color space conversion) are
broken down into simpler monadic functions and arithmetic opera-
tions, each of which can be supported in a pass through the OpenGL
pipeline. Some shader functions, such as texturing and diffuse or
specular lighting, have direct correspondents in OpenGL. Often,
complex mathematical and shader functions are simply translated
to a series of simpler shading language functions.

Flow Control: Stenciling, set by glStencilFunc and
glStencilOp, limits the effect of all operations to only a subset
of the pixels, with other pixels retaining their original framebuffer
values. We use one bit of the stencil to identify pixels in the ob-
ject, and additional stencil bits to identify subsets of those pixels
that pass varying conditionals (if-then-else constructs and loops).
One stencil bit is devoted to each level of nesting. Loops with uni-
form control and conditionals with uniform relations do not need a
stencil bit to control their influence because they affect all pixels.

A two step process is used to set the stencil bit for a varying
conditional. First, the relation is computed with normal arithmetic
operations, such that the result ends up in the alpha channel of the
framebuffer. The value is zero where the condition is true and one
where it is false. Next, a pixel copy is performed with the alpha ��� �

test enabled (set by glAlphaFunc). Only fragments that pass
the alpha test are passed on to the stenciling stage of the OpenGL
pipeline. A stencil bit is set for all of these fragments. The stencil
remains unchanged for fragments that failed the alpha test. In some
cases, the first operation in the body of the conditional can occur in
the same pass that sets the stencil.

The passes corresponding to the different blocks of shader
code at different nesting levels affect only those pixels that have
the proper stencil mask. Because we are executing a SIMD compu-
tation, it is necessary to evaluate both branches of if-then-else con-
structs whose relation varies across an object. The stencil compare
for the else clause simply uses the complement of the stencil bit for
the then clause. Similarly, it is necessary to repeat a loop with a
varying termination condition until all pixels within the object exit
the loop. This requires a test that examines all of the pixels within
the object. We use the minmax function from the ARB imaging
extension as we copy the alpha channel to determine if any alpha
values are non-zero (signifying they still pass the looping condi-
tion). If so, the loop continues.

2.2 OpenGL Encapsulation
We encapsulate OpenGL instructions in three kinds of rendering
passes: GeomPasses, CopyPasses, and CopyTexPasses. Geom-
Passes draw geometry to use vertex, rasterization, and fragment
operations. CopyPasses copy a subregion of the framebuffer (via
glCopyPixels) back into the same place in the framebuffer to
use pixel, rasterization, and fragment operations. A stencil allows
the CopyPass to avoid operating on pixels outside the object. Copy-
TexPasses copy a subregion of the framebuffer into a texture object
(via glCopyTexSubImage2D) and also utilize pixel operations.
There are two subtypes of GeomPass. The first draws the object
geometry, including normal vectors and texture coordinates. The
second draws a screen-aligned bounding rectangle that covers the
object using stenciling to limit the operations to pixels on the ob-
ject. Each pass maintains the relevant OpenGL state for its path

4 - 3

through the pipeline. State changes on drawing are minimized by
only setting the state in each pass that is not default and immedi-
ately restoring that state after the pass.

2.3 Compiling to OpenGL
The key to supporting interactive programmable shading is a com-
piler that translates the shading language into OpenGL assembly.
This is a CISC-like compiler problem because OpenGL passes are
complex instructions. The problem is somewhat simplified due to
constraints in the language and in OpenGL as an instruction set.
For example, we do not have to worry about instruction scheduling
since there is no overlap between rendering passes.

Our compiler implementation is guided by a desire to retarget
the compiler to easily take advantage of unique features and perfor-
mance and to pick the best set of passes for each target architecture.
We also want to be able to support multiple shading languages and
adapt as languages evolve. To help meet these goals, we built our
compiler using an in-house tool inspired by the iburg code gen-
eration tool [11], though we use it for all phases of compilation.
This tool finds the least-cost covering of a tree representation of the
shader based on a text file of patterns.

A simple example can show how the tree-matching tool op-
erates and how it allows us to take advantage of extensions to
OpenGL. Part of a shader might be matched by a pair of tex-
ture lookups, each with a cost of one, or by a single multi-texture
lookup, also with a cost of one. In this case, multi-texture is cheaper
because it has a total cost of one instead of two. Using similar
matching rules and semantic actions, the compiler can make use of
fragment lighting, light texture, noise generation, divide or condi-
tional blends, or any other OpenGL extension [16, 27].

The entire shader is matched at once, giving the set of match-
ing rules that cover the shader with the least total cost. For exam-
ple, the computations surrounding the above pair of texture lookups
expand the set of possible matching rules. Given operation A, tex-
ture lookup B, texture lookup C, and operation D, it may be pos-
sible to do all of the operations in four separate passes (A,B,C,D),
to do the surrounding operations separately while combining the
texture lookups into one multi-texture pass for a total cost of three
(A,BC,D), or to combine one computation with each texture lookup
for a cost of two (AB,CD). By considering the entire shader we can
choose the set of matching rules with the least overall cost.

When we use the tool for final OpenGL pass generation, we
currently use the number of passes as the cost for each matching
rule. For performance optimization, the costs should correspond
to predicted rendering speed, so the cost for a GeomPass would be
different from the cost for a CopyPass or a CopyTexPass.

The pattern matching happens in two phases, labeling and re-
ducing. Labeling is done bottom-up through the abstract syntax
tree, using dynamic programming to find the least-cost set of pat-
tern match rules. Reducing is done top-down, with one semantic
action run before the node’s children are reduced and one after.
The iburg-like label/reduce tool proved useful for more than just
final pass selection. We use it for shader syntax checking, constant
folding, and even memory allocation (although most of the memory
allocation algorithm is in the code associated with a small number
of rules). The ease of changing costs and creating new matching
rules allows us to achieve our goal of flexible retargeting of the
compiler for different hardware and shading languages.

2.4 Scene Graph Support
Since objects may be rendered multiple times, it is necessary to
retain geometry data and to deliver it repeatedly to the graphics

hardware. In addition, shaders need to be associated with objects to
describe their appearances, and the shaders and objects need to be
translated into OpenGL passes to render an image. Our framework
supports these operations in a scene graph used by an application
through the addition of new scene graph containers and new traver-
sals.

In our implementation, we have extended the Cosmo3D scene
graph library [30]. Cosmo3D uses a familiar hierarchical scene
graph. Internal nodes describe coordinate transformations, while
the leaves are Shape nodes, each of which contains a list of Geome-
try and an Appearance. Traversals of the scene graph are known as
actions. A DrawAction, for example, is applied to the scene graph
to render the objects into a window.

We have implemented a new appearance class that contains
shaders. When included in a shape node, this appearance com-
pletely describes how to shade the geometry in the shape. The
shaders may include a list of active light shaders, a displacement
shader, a surface shader, and an atmosphere shader. In addition,
we have implemented a new traversal, known as a ShadeAction. A
ShadeAction converts a scene graph containing shapes with the new
appearance into another Cosmo3D scene graph describing the mul-
tiple passes for all of the objects in the original scene graph. (The
transformation of scene graphs is a powerful, general technique that
has been proposed to address a variety of problems [1].) The key
element of the ShadeAction is the shading language compiler that
converts the shaders into multiple passes. A ShadeAction may treat
multiple objects that share the same shader as a single, combined
object to minimize overhead. A DrawAction applied to this second
scene graph renders the final image.

The scene graph passes information to the compiler including
the matrix to transform from the object’s coordinate system into
camera space and the screen space footprint for the geometry. The
footprint is computed during the ShadeAction by projecting a 3D
bounding box of the geometry into screen space and computing an
axis-aligned 2D bounding box of the eight projected points. Only
pixels within the 2D bounding box are copied on a CopyPass or
drawn on the quad-GeomPass to minimize unnecessary data move-
ment when shading each object.

We provide support for debugging at the single-step, pass-
by-pass level through special hooks inserted into the DrawAction.
Each pass is held in an extended Cosmo3D Group node, which in-
vokes the debugging hook functions when drawn. Each pass is also
tagged with the line of source code that generated it, so everything
from shader source-level debugging to pass-by-pass image dumps
is possible. Hooks at the per-pass level also let us monitor or es-
timate performance. At the coarsest level, we can find the number
of passes executed, but we can also examine each pass to record
details like pixels written or time to draw.

3 EXAMPLE: INTERACTIVE SL
We have developed a constrained shading language, called ISL (for
Interactive Shading Language) [25] and an ISL compiler to demon-
strate our method on current hardware. ISL is similar in spirit to the
RenderMan Shading Language in that it provides a C-like syntax
to specify per-pixel shading calculations, and it supports separate
light, surface, and atmosphere shaders. Data types include varying
colors, and uniform floats, colors, matrices, and strings. Local vari-
ables can hold both uniform and varying values. Nestable flow con-
trol structures include loops with uniform control, and uniform and
varying conditionals. There are built-in functions for diffuse and
specular lighting, texture mapping, projective textures, environment
mapping, RGBA one-dimensional lookup tables, and per-pixel ma-

4 - 4

surface celtic() {
 varying color a;
 FB = diffuse;
 FB *= color(.5,.2,0.,1.);
 a = FB;
 FB = specular(30.);
 FB += a;
 FB *= texture("celtic");
 a = FB;
 FB = 1;
 FB −= texture("celtic");
 FB *= texture("silk");
 FB *= .15;
 FB += a;
}
distantlight leaves(uniform string
 map = "leaves", ...) {
 uniform float tx;
 uniform float ty;
 uniform float tz;
 tx = frame*speedx+phasex;
 ty = frame*speedy+phasey;
 tz = frame*speedz+phasez;
 FB = project(map,
 scale(sx,sx,sx)*
 rotate(0,0,1,rx)*
 translate(ax*sin(tx),0,0)*
 shadermatrix);
 FB *= project(map,
 scale(sy,sy,sy)*...);
}
uniform matrix lt = (0,0,0,0,
 0,0,0,0,1,1,1,0,0,0,0,1);
surface bump(uniform string b="";
 uniform string tx = "") {
 uniform matrix m;
 FB = texture(b);
 m = objectmatrix;
 m[0][3] = m[1][3] = m[2][3] = 0.;
 m[3][3] = m[3][0] = m[3][1] = 0.;
 m[3][2] = 0.;
 m = lt*m*translate(−1,−1,−1)*
 scale(2,2,2);
 FB = transform(FB,m);
 FB *= texture(tx);
}
#include "threshtab.h"
surface shipRockRot(...) {
 varying color a, b, c;
 FB = texture(rot); FB *= .5;
 FB += .32*(1−cos(.08*frame));
 FB = lookup(FB,mtab); c = FB;
 FB = color(1,1,1,1); FB −= c;
 FB *= texture(t1); a = FB;
 FB = texture(t2);
 FB *= texture(rot);
 FB = diffuse;
 FB *= color(.5,.2,0,1); b = FB;
 FB = specular(30.);
 FB += b; FB *= texture(t2);
 FB *= c; FB += a;
}

#include "swizzle.h"
table greentable = { {0,.2,0,1},
 {0,.4,0,1) };
surface toon(uniform float do = 1.;
 uniform float edge = .25) {
 FB = environment("park.env");
 if (do > .5) {
 FB += edge;
 FB =transform(FB,rgba_rrra);
 FB =lookup(FB,greentable);
 FB += environment("sun");
 }
}

Figure 3: ISL Examples. ISL shaders are shown to the right of
each image. Ellipses denote where parameters and state-
ments have been omitted. Some tables are in header files.

trix transformations. In addition, ISL supports uniform shader pa-
rameters and a set of uniform global variables (shader space, object
space, time, and frame count).

We have intentionally constrained ISL in a number of ways.
First, we only chose primitive operations and built-in functions
that can be executed on any hardware supporting base OpenGL 1.2
plus the color matrix extension. Consequently, many current hard-
ware systems can support ISL. (If the color matrix transformation
is eliminated, ISL should run anywhere.) This constraint provides
the shader writer with insight into how limited precision of current
commercial hardware may affect the shader. Second, the syntax
does not allow varying expressions of expressions, which ensures
that the compiler does not need to create any temporary storage
not already made explicit in the shader. As a result, the writer of
a shader knows by inspection the worst-case temporary storage re-
quired by the shading code (although the compiler is free to use less
storage, if possible). Third, arbitrary texture coordinate computa-
tion is not supported. Texture coordinates must come either from
the geometry or from the standard OpenGL texture coordinate gen-
eration methods and texture matrix.

One consequence of these design constraints is that ISL shad-
ing code is largely decoupled from geometry. For example, since
shader parameters are uniform there is no need to attach them di-
rectly to each surface description in the scene graph. As a result,
ISL and the compiler can migrate from application to application
and scene graph to scene graph with relative ease.

3.1 Compiler
We perform some simple optimizations in the parser. For instance,
we do limited constant compression by evaluating at parse time
all expressions that are declared uniform. When parameters or the
shader code change, we must reparse the shader. In our current sys-
tem, we do this every time we perform a ShadeAction. A more so-
phisticated compiler, such as the one implemented for the Render-
Man Shading Language (Section 4) performs these optimizations
outside the parser.

We expand the parse trees for all of the shaders in an appear-
ance (light shaders, surface shader, and atmosphere shader) into a
single tree. This tree is then labeled and reduced using the tree
matching compiler tool described in Section 2.3. The costs fed into
the labeler instruct the compiler to minimize the total number of
passes, regardless of the relative performance of the different kinds
of passes.

The compiler recognizes and optimizes subexpressions such
as a texture, diffuse, or specular lighting multiplied by a constant.
The compiler also recognizes when a local variable is assigned a
value that can be executed in a single pass. Rather than executing
the pass, storing the result, and retrieving it when referenced, the
compiler simply replaces the local variable usage with the single
pass that describes it.

3.2 Demonstration
We have implemented a simple viewer on top of the extended scene
graph to demonstrate ISL running interactively. The viewer sup-
ports mouse interaction for rotation and translation. Users can also
modify shaders interactively in two ways. They can edit shader text
files, and their changes are picked up immediately in the viewer.
Additionally, they can modify parameters by dragging sliders, ro-
tating thumb-wheels, or entering text in a control panel. The viewer
creates the control panel on the fly for any selected shader. Changes
to the parameters are seen immediately in the window. Examples
of the viewer running ISL are given in Figures 2 and 3.

4 - 5

4 EXAMPLE: RENDERMAN SL
RenderMan is a rendering and scene description interface standard
developed in the late 1980s [14, 28, 32]. The RenderMan stan-
dard includes procedural and bytestream scene description inter-
faces. It also defines the RenderMan Shading Language, which
is the de facto standard for programmable shading capability and
represents a well-defined goal for anyone attempting to accelerate
programmable shading.

The RenderMan Shading Language is extremely general, with
control structures common to many programming languages, rich
data types, and an extensive set of built-in operators and geomet-
ric, mathematical, lighting, and communication functions. The lan-
guage originally was designed with hardware acceleration in mind,
so complicated or user-defined data types that would make acceler-
ation more difficult are not included. It is a large but straightforward
task to translate the RenderMan Shading Language into multi-pass
OpenGL, assuming the following two extensions:

Extended Range and Precision Data Types: Even the sim-
plest RenderMan shaders have intermediate computations that re-
quire data values to extend beyond the range [0-1], to which
OpenGL fragment color values are clamped. In addition, they
need higher precision than is found in current commercial hard-
ware. With the color range extension, color data can have an
implementation-specific range to which it is clamped during raster-
ization and framebuffer operations (including color interpolation,
texture mapping, and blending). The framebuffer holds colors of
the new type, and the conversion to a displayable value happens
only upon video scan-out. We have used the color range extension
with an IEEE single precision floating point data type or a subset
thereof to support the RenderMan Shading Language.

Pixel Texture: RenderMan allows texture coordinates to be
computed procedurally. In this case, texture coordinates cannot
be expected to change linearly across a geometric primitive, as re-
quired in unextended OpenGL. This general two-dimensional indi-
rection mechanism can be supported with the OpenGL pixel texture
extension [17, 18, 27]. This extension allows the (possibly float-
ing point) contents of the framebuffer to be used as texture indices
when pixels are copied from the framebuffer. The red, green, blue,
and alpha channels are used as texture coordinates s, t, r, and q,
respectively. We use pixel texture not only to index two dimen-
sional textures but also to index extremely wide one-dimensional
textures. These wide textures are used as lookup tables for math-
ematical functions such as sin, reciprocal, and sqrt. These can be
simple piecewise linear approximations, starting points for Newton
iteration, components used to construct the more complex mathe-
matical functions, or even direct one-to-one mappings for a reduced
floating point format.

4.1 Scene Graph Support
The RenderMan Shading Language demands greater support from
the scene graph library than ISL because geometry and shaders are
more tightly coupled. Varying parameters can be supplied as four
values that correspond to the corners of a surface patch, and the
parameter over the surface is obtained through bilinear interpola-
tion. Alternatively, one parameter value may be supplied per con-
trol point for a bicubic patch mesh or a NURBS patch, and the
parameter is interpolated using the same basis functions that de-
fine the surface. We associate a (possibly empty) list of named pa-
rameters with each surface to hold any parameters provided when
the surface is defined. When the surface geometry is tessellated
to form GeoSets (triangle strip sets and fan sets, etc.), its parame-
ters are transferred to the GeoSets so that they may be referenced

Figure 4: RenderMan SL Examples. The top and bottom im-
ages of each pair were rendered with PhotoRealistic Render-
Man from Pixar and our multi-pass OpenGL renderer, respec-
tively. No shaders use image maps, except for the reflection
and depth shadow maps generated on the fly. The wood
floor, blue marble, red apple, and wood block print textures
all are generated procedurally. The velvet and brushed metal
shaders use sophisticated illuminance blocks for their re-
flective properties. The specular highlight differences are due
to Pixar’s proprietary specular function; we use the definition
from the RenderMan specification. The blue marble, wood
floor, and apple do not match because of differences in in the
noise function. Other discrepancies typically are due to lim-
ited precision lookup tables used to help evaluate mathemat-
ical functions. (Credit: LGParquetPlank by Larry Gritz, SHWvel-
vet and SHWbrushedmetal by Stephen Westin, DPBlueMarble
by Darwin Peachey, eroded from the RenderMan compan-
ion, JMredapple by Jonathan Merritt, and woodblockprint
by Scott Johnston. Courtesy of the RenderMan Repository
http://www.renderman.org.)

4 - 6

and drawn as vertex colors by the passes produced by the compiler.
Similarly, a shader may require derivatives of surface properties,
such as the partial derivatives of the position (dP/du and dP/dv)
either as global variables or through a differential function such
as calculatenormal. A shader may also use derivatives of
user-supplied parameters. The compiler can request from the scene
graph any of these quantities evaluated over a surface at the same
points used in its tessellation. As with any other parameter, they are
computed on the host and stored in the vertex colors for the surface.
Where possible, lazy evaluation ensures that the user does not pay
in time or space for this support unless requested.

4.2 Compiler
Our RenderMan compiler is based on multiple phases of the tree-
matching tool described in Section 2.3. The phases include:

Parsing: convert source into an internal tree representation.
Phase0: detect errors
Phase1: perform context-sensitive typing (e.g. noise, texture)
Phase2: detect and compress uniform expressions
Phase3: compute “difference trees” for Derivatives
Phase4: determine variable usage and live range information
Phase5: identify possible OpenGL instruction optimizations
Phase6: allocate memory for variables
Phase7: generate optimized, machine specific OpenGL
The mapping of RenderMan to OpenGL follows the method-

ology described in Section 2.1. Texturing and some lighting carry
over directly; most math functions are implemented with lookup
tables; coordinate transformations are implemented with the color
matrix; loops with varying termination condition are supported with
minmax; and many built-in functions (including illuminance, solar,
and illuminate) are rewritten in terms of simpler operations. Fea-
tures whose mapping to OpenGL is more sophisticated include:

Noise: The RenderMan SL provides band-limited noise
primitives that include 1D, 2D, 3D, and 4D operands and single
or multiple component output. We use floating point arithmetic and
texture tables to support all of these functions.

Derivatives: The RenderMan SL provides access to surface-
derivative information through functions that include Du, Dv,
Deriv, area, and calculatenormal. We dedicate a compiler
phase to fully implement these functions using a technique similar
that described by Larry Gritz [12].

A number of optimizations are supported by the compiler.
Uniform expressions are identified and computed once for all pix-
els. If texture coordinates are linear functions of s and t or vertex
coordinates, they are recognized as a single pass with some com-
bination of texture coordinate generation and texture matrix. Tex-
ture memory utilization is minimized by allocating storage based
on single-static assignment and live-range analysis [4].

4.3 Demonstration
We have implemented a RenderMan renderer, complete with shad-
ing language, bytestream, and procedural interfaces on a software
implementation of OpenGL including color range and pixel tex-
ture. We experimented with subsets of IEEE single precision float-
ing point. An interesting example was a 16 bit floating point format
with a sign bit, 10 bits of mantissa and 5 bits of exponent. This
format was sufficient for most shaders, but fell short when com-
puting derivatives and related difference-oriented functions such
as calculatenormal. Our software implementation supported
other OpenGL extensions (cube environment mapping, fragment
lighting, light texture, and shadow), but they are not strictly neces-
sary as they can all be computed using existing features.

ISL Image celtic leaves bump rot toon
MPix Filled 2.8 4.3 1.2 2.2 1.9
Frames/Second 6.8 7.3 9.6 12.5 4.6
RSL Image teapots apple print
MPix Filled 500 280 144

Table 1: Performance for 512x512 images on Silicon Graphics
Octane/MXI

The RenderMan bytestream interface was implemented on top
of the RenderMan procedural interface. When data is passed to the
procedural interface, it is incorporated into a scene graph. Higher
order geometric primitives not native to Cosmo3D, such as trimmed
quadrics and NURBS patches are accommodated by extending the
scene graph library with parametric surface types, which are tes-
sellated just before drawing. At the WorldEnd procedural call, this
scene graph is rendered using a ShadeAction that invokes the Ren-
derMan shading language compiler followed by a DrawAction.

To establish that the implementation was correct, over 2000
shading language tests, including point-feature tests, publicly avail-
able shaders, and more sophisticated shaders were written or ob-
tained. The results of our renderer were compared to Pixar’s com-
mercially available PhotoRealistic RenderMan renderer. While
never bit-for-bit accurate, the shading is typically comparable to
the eye (with expected differences due, for instance, to the noise
function). A collection of examples is given in Figure 4. We fo-
cused primarily on the challenge of mapping the entire language to
OpenGL, so there is considerable room for further optimization.

There are a few notable limitations in our implementation.
Displacement shaders are implemented, but treated as bump map-
ping shaders; surface positions are altered only for the calculation
of normals, not for rasterization. True displacement would have
to happen during object tessellation and would have performance
similar to displacement mapping in traditional software implemen-
tations. Transparency is not implemented. It is possible, but re-
quires the scene graph to depth-sort potentially transparent surfaces.
Pixel texture, as it is implemented, does not support texture filter-
ing, which can lead to aliasing. Our renderer also does not currently
support high quality pixel antialiasing, motion blur, and depth of
field. One could implement all of these through the accumulation
buffer as has been demonstrated elsewhere [13].

5 DISCUSSION
We measured the performance of several of our ISL and RenderMan
shaders (Table 1). The performance numbers for millions of pixels
filled are conservative estimates since we counted all pixels in the
object’s 2D bounding box even when drawing object geometry that
touched fewer pixels.

5.1 Drawbacks
Our current system has a number of inefficiencies that impact our
performance. First, since we do not use deferred shading, we may
spend several passes rendering an object that is hidden in the final
image. There are a variety of algorithms that would help (for ex-
ample, visibility culling at the scene graph level), but we have not
implemented any of them.

Second, the bounding box of objects in screen space is used
to define the active pixels for many passes. Consequently pixels
within the bounding box but not within the object are moved un-
necessarily. This taxes one of the most important resources in hard-
ware: bandwidth to and from memory.

4 - 7

Third, we have only included a minimal set of optimization
rules in our compiler. Many current hardware systems share frame-
buffer and texture memory bandwidth. On these systems, stor-
age and retrieval of intermediate results bears a particularly high
price. This is a primary motivation for doing as many operations
per pass as possible. Our iburg-like rule matching works well for
the pipeline of simple units found in standard OpenGL, but more
complex units (as found in some new multitexture extensions, for
example) require more powerful compiler technology. Two possi-
bilities are surveyed by Harris [15].

5.2 Advantages
Our methodology allows research and development to proceed in
parallel as shading languages, compilers, and hardware indepen-
dently evolve. We can take advantage of the unique feature and
performance needs of different application areas through special-
ized shading languages.

The application does not have to handle the complexities of
multipass shading since the application interface is a scene graph.
This model is a natural extension of most interactive applications,
which already have a retained mode interface of some sort to enable
users to manipulate their data. Applications still retain the other
advantages of having a scene graph, like occlusion culling and level
of detail management.

As mentioned, we have only implemented a few of the many
possible compiler optimizations. As the compiler improves, our
performance will improve, independent of language or hardware.

Finally, the rapid pace of graphics hardware development has
resulted in systems with a diverse set of features and relative feature
performance. Our design allows an application to use a shading
language on all of the systems, and still take advantage of many of
their unique characteristics. Hardware vendors do not need to create
the shading compiler and retained data structures since they operate
above the level of the drivers. Further, since complex effects can be
supported on unextended hardware, designers are free to create fast,
simple hardware without compromising on capabilities.

6 CONCLUSION
We have created a software layer between the application and the
hardware abstraction layer to translate high-level shading descrip-
tions into multi-pass OpenGL. We have demonstrated this approach
with two examples, a constrained shading language that runs inter-
actively on current hardware, and a fully general shading language.
We have also shown that general shading languages, like the Ren-
derMan Shading Language, can be implemented with only two ad-
ditional OpenGL extensions.

There is a continuum of possible languages between ISL and
the RenderMan Shading Language with different levels of func-
tionality. We have applied our method to two different shading lan-
guages in part to demonstrate its generality.

There are many avenues of future research. New compiler
technology can be developed or adapted for programmable shading.
There are significant optimizations that we are investigating in our
compilers. Research is also needed to understand what hardware
features are best for supporting interactive programmable shading.
Finally, given examples like the scientific visualization constructs
described by Crawfis that are not found in the RenderMan shading
language [9], we believe the wide availability of interactive pro-
grammable shading will spur exciting developments in new shading
languages and new applications for them.

References
[1] BIRCH, P., BLYTHE, D., GRANTHAM, B., JONES, M., SCHAFER, M., SE-

GAL, M., AND TANNER, C. An OpenGL++ Specification. SGI, March 1997.

[2] BLYTHE, D., GRANTHAM, B., KILGARD, M. J., MCREYNOLDS, T., NEL-
SON, S. R., FOWLER, C., HUI, S., AND WOMACK, P. Advanced graphics
programming techniques using OpenGL: Course notes. In Proceedings of
SIGGRAPH ’99 (July 1999).

[3] BOCK, D. Tech watch: Volume rendering. Computer Graphics World 22, 5
(May 1999).

[4] BRIGGS, P. Register Allocation via Graph Coloring. PhD thesis, Rice Uni-
versity, April 1992.

[5] CABRAL, B., CAM, N., AND FORAN, J. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. 1994 Sympo-
sium on Volume Visualization (October 1994), 91–98. ISBN 0-89791-741-3.

[6] CABRAL, B., OLANO, M., AND NEMEC, P. Reflection space image based
rendering. Proceedings of SIGGRAPH 99 (August 1999), 165–170.

[7] COOK, R. L. Shade trees. Computer Graphics (Proceedings of SIGGRAPH
84) 18, 3 (July 1984), 223–231. Held in Minneapolis, Minnesota.

[8] CORRIE, B., AND MACKERRAS, P. Data shaders. Visualization ’93 1993
(1993).

[9] CRAWFIS, R. A., AND ALLISON, M. J. A scientific visualization synthe-
sizer. Visualization ’91 (1991), 262–267.

[10] DIEFENBACH, P. J., AND BADLER, N. I. Multi-pass pipeline rendering: Re-
alism for dynamic environments. 1997 Symposium on Interactive 3D Graph-
ics (April 1997), 59–70.

[11] FRASER, C. W., HANSON, D. R., AND PROEBSTING, T. A. Engineering
a simple, efficient code generator generator. ACM Letters on Programming
Languages and Systems 1, 3 (September 1992), 213–226.

[12] GRITZ, L., AND HAHN, J. K. BMRT: A global illumination implementation
of the RenderMan standard. Journal of Graphics Tools 1, 3 (1996), 29–47.

[13] HAEBERLI, P. E., AND AKELEY, K. The accumulation buffer: Hardware
support for high-quality rendering. Computer Graphics (Proceedings of SIG-
GRAPH 90) 24, 4 (August 1990), 309–318.

[14] HANRAHAN, P., AND LAWSON, J. A language for shading and lighting cal-
culations. Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August
1990), 289–298.

[15] HARRIS, M. Extending microcode compaction for real architectures. In Pro-
ceedings of the 20th annual workshop on Microprogramming (1987), pp. 40–
53.

[16] HART, J. C., CARR, N., KAMEYA, M., TIBBITTS, S. A., AND COLEMAN,
T. J. Antialiased parameterized solid texturing simplified for consumer-level
hardware implementation. 1999 SIGGRAPH / Eurographics Workshop on
Graphics Hardware (August 1999), 45–53.

[17] HEIDRICH, W., AND SEIDEL, H.-P. Realistic, hardware-acceleratedshading
and lighting. Proceedings of SIGGRAPH 99 (August 1999), 171–178.

[18] HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. Appli-
cations of pixel textures in visualization and realistic image synthesis. 1999
ACM Symposium on Interactive 3D Graphics (April 1999), 127–134. ISBN
1-58113-082-1.

[19] JAQUAYS, P., AND HOOK, B. Quake 3: Arena shader manual, revision 10. In
Game Developer’s Conference Hardcore Technical Seminar Notes (Decem-
ber 1999), C. Hecker and J. Lander, Eds., Miller Freeman Game Group.

[20] KAUTZ, J., AND MCCOOL, M. D. Interactive rendering with arbitrary brdfs
using separable approximations. Eurographics Rendering Workshop 1999
(June 1999). Held in Granada, Spain.

[21] KELLER, A. Instant radiosity. Proceedings of SIGGRAPH 97 (August 1997),
49–56.

[22] KYLANDER, K., AND KYLANDER, O. S. Gimp: The Official Handbook.
The Coriolis Group, 1999.

[23] MAX, N., DEUSSEN, O., AND KEATING, B. Hierarchical image-based ren-
dering using texture mapping hardware. Rendering Techniques ’99 (Proceed-
ings of the 10th Eurographics Workshop on Rendering) (June 1999), 57–62.

[24] MCCOOL, M. D., AND HEIDRICH, W. Texture shaders. 1999 SIGGRAPH /
Eurographics Workshop on Graphics Hardware (August 1999), 117–126.

[25] OLANO, M., HART, J. C., HEIDRICH, W., MCCOOL, M., MARK, B., AND
PROUDFOOT, K. Approaches for procedural shading on graphics hardware:
Course notes. In Proceedings of SIGGRAPH 2000 (July 2000).

[26] OLANO, M., AND LASTRA, A. A shading language on graphics hardware:
The PixelFlow shading system. Proceedings of SIGGRAPH 98 (July 1998),
159–168.

[27] OPENGL ARB. Extension specification documents. http://www.opengl.org-
/Documentation/Extensions.html, March 1999.

[28] PIXAR. The RenderMan Interface Specification: Version 3.1. Pixar Anima-
tion Studios, September 1999.

[29] SEGAL, M., AKELEY, K., FRAZIER, C., AND LEECH, J. The OpenGL
Graphics System: A Specification (Version 1.2.1). Silicon Graphics, Inc.,
1999.

[30] SGI TECHNICAL PUBLICATIONS. Cosmo 3D Programmer’s Guide. SGI
Technical Publications, 1998.

[31] SIMS, K. Particle animation and rendering using data parallel computation.
Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August 1990),
405–413.

[32] UPSTILL, S. The RenderMan Companion. Addison-Wesley, 1989.

4 - 8

1 OpenGL Shader
OpenGL Shader compiles shading programs described in its Interactive Shading Lan-
guage (ISL), into multiple rendering passes. The general technique is described in the
“Interactive Multi-Pass Programmable Shading”, originally published in SIGGRAPH
2000 and included with these notes. In contrast to the systems in the previous two
chapters, ISL is conceived as a higher-level cross-platform language for describing
shading.

The higher-level aspects mean that the shading language includes high-level con-
structs like if’s and loops. The cross-platform aspect means that any ISL shader will
run and produce similar results on any supported platform. In the case of ISL, the com-
mon platform is OpenGL 1.1 or later with an assumed subset of the standard imaging
extensions. Features that cannot be supported by any platform meeting the minimum
constraints are not included in the language.

OpenGL Shader can and does map operations in the language to many places in the
OpenGL pipeline. For example, a single multiply expressed in ISL may be mapped to
the OpenGL units for texture environment, lighting, blend, or scale and bias. Further,
on platforms with the appropriate extensions, that same multiply may also map to a
multitexture blend or a register combiner operation. The basic premise of ISL is that
shaders are written as if every operation were a rendering pass, and it is the compiler’s
job to stuff as many of those simple operations into a single pass as possible.

Since OpenGL Shader is not part of the graphics driver, its shading API sits above
the graphics API. It does its work using ordinary OpenGL calls. When an object needs
to be rendered (as may happen multiple times when shading using multi-pass render-
ing), OpenGL Shader calls a geometry-drawing callback function. This allows the
application itself to render the object using whatever data structures and OpenGL calls
it would normally use for unshaded objects.

However, OpenGL Shader is in the shading language section of this course, not the
API section. For more details on the OpenGL Shader API, see the OpenGL Shader
man pages or Real-Time Shading [3].

In the following sections, we will step through the construction of the example
shaders.

2 Shiny Bump Map
The shiny bump map example highlights the run-everywhere nature of ISL. While
many hardware platforms support the dependent texturing or pixel texture extensions
necessary to do a full environment map based on bumps from a texture, not all do.
To maintain the “every shader runs everywhere” requirement, ISL only supports 1D
dependent texturing. This can be cast as any of dependent texture, pixel texture or a
color table lookup.

4-9

Figure 1: Simple environment

2.1 Environment
Fortunately, it’s enough to get a shiny bump map effect with an environment with only
one degree of variation: blue above, blending to white near the horizon, then switching
to shades of brown and green below the horizon. This 1D map gives the effect of a
shiny object, but limits the types of environments that can be used. It is possible to
factor some environments into 1D factors, but that is not shown here.

So, the bump mapped environment starts with the 1D environment shown in Fig-
ure 1, in this case, defined procedurally by this ISL code:

// build 1D reflection map
uniform color groundsky[128];

uniform float i=0; uniform float h=64;

// ground = first h entries
repeat(h) {

// color spline for ground
groundsky[i] = spline(i/(h-1),{

color(.3,.6,.1,1),

color(.3,.6,.1,1),

color(.6,.6,.1,1),

color(.4,.7,.1,1),

4-10

color(.4,.4,.1,1),

color(.3,.3,.1,1)});
i = i+1;

}
// sky = last h entries
repeat(h) {

// color spline for sky
groundsky[i] = spline((i-h)/(h-1),{

color(1.,1.,1.,1),

color(1.,1.,1.,1),

color(.3,.7,.9,1),

color(.3,.7,.9,1),

color(.3,.7,.9,1),

color(.3,.7,.9,1)});
i = i+1;

}

Assuming the viewer is sufficiently far away from the object, we can just use the
vertical component of the bumped normals as the index into this environment map.

2.2 Bump
For this example, we chose to use the normal map style of bump mapping[1]. First, we
created textures for the normal as well as S and T tangent vectors (normalize(dPds)
and normalize(dPdt) in RenderMan notation). This was done with a modified draw
function that used the S and T texture coordinates as position and the normal or tangent
vectors as color. In effect, unwrapping the object into a the parametric domain to create
s normal-map texture patch. These maps for a torus are shown flat and applied to the
object in Figures 2, 3 and 4

The next step is to create a bumped normal map. For this purpose, I used the bump
map shown in Figure 5. To create a bumped normal map, we must shift the normal
at each texel in the S and T tangent directions by an amount proportional to the bump
map gradient. This could be done as a loop of computations over the texels, but I chose
to use a simple imgtcl script (part of the SGI ImageVision Tools package). The results
of this script are shown in Figure 6. The script is:

set progname [file tail $argv0]

if {$argc != 6} {
puts stderr "Usage: $progname bump.bw bumpScale norm.rgb dPds.rgb dPdt.rgb bumpnorm.rgb

Create textures to use for bump mapping from a source image

The source image, bump.bw, must be a single channel (luminance) image

The bump scale bumpScale must be a float

Color images norm, dPds and dPdt contain surface normals, s-tangents and

t-tangents, with -1..1 vectors components scaled to 0..255

The output, bumpnorm contains the bumped version of norm.rgb"

4-11

Figure 2: Simple normal map

Figure 3: S Tangent map

4-12

Figure 4: T Tangent map

Figure 5: Bump map

4-13

Figure 6: Bump mapped normal map

4-14

exit 1

}

set bumpImg [lindex $argv 0]

set bumpScale [lindex $argv 1]

set normImg [lindex $argv 2]

set dPdsImg [lindex $argv 3]

set dPdtImg [lindex $argv 4]

set nOutImg [lindex $argv 5]

open input files
ilFileImgOpen bump $bumpImg

ilFileImgOpen norm $normImg

ilFileImgOpen dPds $dPdsImg

ilFileImgOpen dPdt $dPdtImg

rescale bump to 0-1
ilScaleImg bumpF bump

bumpF setRange 0 1

bumpF setDataType iflFloat

x & y components of gradient
new float deriv {3} = "[expr -$bumpScale] 0 $bumpScale"

ilSepKernel sDeriv iflFloat $deriv 3 NULL 1

ilSepKernel tDeriv iflFloat NULL 1 $deriv 3

ilConvImg sSub bumpF sDeriv 0 ilWrap

ilConvImg tSub bumpF tDeriv 0 ilWrap

rescale norm, dPds and dPdt to -1 to 1
ilScaleImg normF norm

normF setRange -1 1

normF setDataType iflFloat

ilScaleImg dPdsF dPds

dPdsF setRange -1 1

dPdsF setDataType iflFloat

ilScaleImg dPdtF dPdt

dPdtF setRange -1 1

dPdtF setDataType iflFloat

bumped normal =
norm + sSub*dPds + tSub*dPdt
ilMultiplyImg sComp sSub dPdsF

ilMultiplyImg tComp tSub dPdtF

4-15

ilAddImg stComp sComp tComp

ilAddImg bumped normF stComp

recast to 0-255
ilScaleImg nOut bumped

nOut setRange 0 255

nOut setDataType iflUChar

write as new file
ilFileImgCreate outFile $nOutImg nOut

outFile copy nOut

outFile closeFile

bump closeFile

norm closeFile

dPds closeFile

dPdt closeFile

exit 0

2.3 Bump + Environment
The final step is to put the normal map and environment together. First, we must
transform the normals in the normal map into world space where our environment map
should be applied. We can do this using the ISL transform operation, as seen in this
snippet of ISL code:

////////////////////
// lookup normal vector
FB=texture(nmap);

////////////////////
// transform normal vector

// rescale normal vectors from 0..1 to -1..1 and back
uniform matrix nScale = translate(-.5,-.5,-.5)*scale(2,2,2);

uniform matrix nUnscale = scale(.5,.5,.5)*translate(.5,.5,.5);

// transform -1..1 normal from object to world space
parameter matrix nm = inverse(affine(shadermatrix));

// set rgb to y (vertical) component and alpha to z (into screen)
// so one lookup will do both color=environment map and alpha=Fresnel
uniform matrix gggb = matrix(0,0,0,0,

1,1,1,0,

0,0,0,1,

4-16

Figure 7: Final shiny/bumpy shader results

0,0,0,0);

// transform normal so rgb=y component of world space normal
// a=z compenent of world space normal
FB=transform(nScale * nm * nUnscale * gggb);

Finally, we look up the result in the environment map, giving the results shown in
Figure 7 from this final shader:

surface reflbump(uniform string nmap = "torus normmap.rgb")

{
////////////////////
// lookup normal vector
FB=texture(nmap);

////////////////////
// transform normal vector

// rescale normal vectors from 0..1 to -1..1 and back
uniform matrix nScale = translate(-.5,-.5,-.5)*scale(2,2,2);

uniform matrix nUnscale = scale(.5,.5,.5)*translate(.5,.5,.5);

// transform -1..1 normal from object to world space
parameter matrix nm = inverse(affine(shadermatrix));

// set rgb to y (vertical) component and alpha to z (into screen)
// so one lookup will do both color=environment map and alpha=Fresnel
uniform matrix gggb = matrix(0,0,0,0,

4-17

1,1,1,0,

0,0,0,1,

0,0,0,0);

// transform normal so rgb=y component of world space normal
// a=z compenent of world space normal
FB=transform(nScale * nm * nUnscale * gggb);

////////////////////
// build and lookup environment map

// build 1D reflection map
uniform color groundsky[128];

uniform float i=0;

uniform float n=128;

uniform float h=n/2;

// ground = first h entries
repeat(h) {

// color spline for ground
groundsky[i] = spline(i/(h-1),{

color(.3,.6,.1,1),

color(.3,.6,.1,1),

color(.6,.6,.1,1),

color(.4,.7,.1,1),

color(.4,.4,.1,1),

color(.3,.3,.1,1)});
i = i+1;

}
// sky = last h entries
repeat(h) {

// color spline for sky
groundsky[i] = spline((i-h)/(h-1),{

color(1.,1.,1.,1),

color(1.,1.,1.,1),

color(.3,.7,.9,1),

color(.3,.7,.9,1),

color(.3,.7,.9,1),

color(.3,.7,.9,1)});
i = i+1;

}

// lookup in map, color=reflection, alpha=fresnel reflectance
FB = lookup(groundsky);

}

4-18

3 Homomorphic BRDF Factorization
The shader for the run-time portion of the homomorphic factorization [2] is almost
trivial. It uses the texture code feature of the ISL texture lookup call to indicate that a
different set of texture coordinates is needed for each lookup. In this case, the texture
coordinates must be computed on a per-vertex basis. The shader is:

surface BRDF(uniform string brdfP = "brdf p.rgb";

uniform string brdfQ = "brdf q.rgb";

uniform color brdfC = color(1,1,1,1))

{
FB = diffuse();

// 1st 1 = identity texture transform matrix
// 2nd 1 = 1st special texture coordinate set, based on L
FB *= texture(brdfP, 1, 1);

// 2 = 2nd special texture coordinate set, based on H
FB *= texture(brdfQ, 1, 2);

// 3 = 3rd special texture coordinate set, based on V
FB *= texture(brdfP, 1, 3);

FB *= brdfC;

}

The extra texture coordinate set number is passed directly to the application’s own
geometry drawing callback, leaving the application in charge of computing L, H and
V in the local tangent space for the three lookups. This is shown as sample application
code in the brdf viewer example that is included with OpenGL Shader or using the
vertex operation API in the geometry code shared by the viewer lib and editor iv

examples.
Final results with a basic paint BRDF applied to a car, and the same with a Fresnel-

modulated environment layer are shown in Figure 8. The same shader used to render
fabric is shown in Figure 9.

4 Procedural Wood
The final example is a procedural wood. Since this wood should have procedural con-
trol over a repeating band structure, I started with one of the most basic repeating
elements in ISL — the repeating texture. The simple 1D triangle ramp texture shown
in the left side of Figure 10, when projected onto an object gives the regular pattern
shown in the right side of Figure 10.

This repeating pattern can be used to pick between two basic colors of wood (result
shown in Figure 11):

4-19

Figure 8: Car with BRDF-based paint (and Fresnel-modulated enviornment layer)

Figure 9: Fabric rendered with factorized BRDF

4-20

Figure 10: Ramp texture map and pattern when projected onto an object

Figure 11: Using ramp to make simple parameterized color choice

4-21

Figure 12: Differing diffuse and specular for each color band

FB = project("wave.bw",

// project in object space
inverse(shadermatrix)*

// control over position of rings
translate(ringCenter[0],ringCenter[1],ringCenter[2])*

// control over angle of rings
rotate(ringRotAxis[0],ringRotAxis[1],ringRotAxis[2],

ringRotAngle)*

// control over size of rings
scale(ringScale,ringScale,ringScale)*

// center in texture
translate(.5,.5,.5));

// dark rings
if (FB[0] < lightToDark) {

FB = darkWood;

}
else {

FB = lightWood;

}

To this, we can add different characteristics for diffuse and specular characteristics
in each band (Figure 12):

{
// diffuse color (saved for later)
FB = diffuse();

varying color dif=FB;

4-22

// specular contribution (saved for later)
FB = environment("highlight.bw");

varying color spec=FB;

FB = project("wave.bw",

inverse(shadermatrix)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

rotate(ringRotAxis[0],ringRotAxis[1],ringRotAxis[2],

ringRotAngle)*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

// dark rings
if (FB[0] < lightToDark) {

// diffuse color
FB = darkWood;

FB *= dif;

varying color a = FB;

// specular gloss
FB = darkGloss;

FB *= spec;

FB += a;

}
// light rings
else {

// diffuse color
FB = lightWood;

FB *= dif;

varying color a = FB;

// specular gloss
FB = lightGloss;

FB *= spec;

FB += a;

}
}

Note that by adjusting darkToLight, we can change the width of dark and light
bands on the fly. The boundary between the bands still seems a bit too smooth and
regular. This can be alleviated with a repeating turbulence texture, projected at a slight
angle to the original band texture. The turbulence texture and its projection are shown
in Figure 13

When added to the basic intensity ramp that determines the noise, it makes a nice
variation to the band boundaries (Figure 14). I used code like the following to allow

4-23

Figure 13: Turbulence texture

4-24

Figure 14: Wood with turbulence added to band boundary

control over the amount of turbulence applied:

// general ring structure: turbulence + triangle wave

// rings are divided bright vs dark in this structure

FB = project("turbulence.bw",

inverse(shadermatrix)*

scale(ringNoiseScale,ringNoiseScale,ringNoiseScale)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

rotate(ringRotAxis[0],ringRotAxis[1],ringRotAxis[2],

ringRotAngle+15)*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

FB *= ringNoiseStrength;

FB += project("wave.bw",

inverse(shadermatrix)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

rotate(ringRotAxis[0],ringRotAxis[1],ringRotAxis[2],

ringRotAngle)*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

As a final addition, we’ll add a fine grain noise for both to both diffuse and specu-
larity within each band. We could use another if, but for demonstration purposes, I’ve
chosen to use an alpha blend instead this time. For the fine grain, I’m using a simple
noise texture, projected along the same direction as the ring structure, but stretched
more along the rings than across (Figure 15). Results shown in Figure 16. Here’s the
final shader:

surface procwood(

4-25

Figure 15: Simple noise texture

Figure 16: Final wood

4-26

parameter float ringScale = 1;

parameter color ringCenter = color(.5,.5,0,1);

parameter color ringRotAxis = color(1,0,0,1);

parameter float ringRotAngle = 15;

parameter float ringNoiseScale = .6;

parameter float ringNoiseStrength = .1;

parameter float lightToDark = .5;

parameter color darkWood = color(.2,.1,0,1);

parameter color darkGrain = color(0,0,0,1);

parameter float darkGloss = .45;

parameter float darkGrainLong = .25;

parameter float darkGrainShort = 1;

parameter float darkGrainGloss = 0;

parameter color lightWood = color(.7,.6,0,1);

parameter color lightGrain = color(.5,.5,0,1);

parameter float lightGloss = .75;

parameter float lightGrainLong = .1;

parameter float lightGrainShort = .2;

parameter float lightGrainGloss = .25

)

{
// diffuse color (saved for later)
FB = diffuse();

varying color dif=FB;

// specular contribution (saved for later)
FB = environment("highlight.bw");

varying color spec=FB;

// general ring structure: turbulence + triangle wave
// rings are divided bright vs dark in this structure
FB = project("turbulence.bw",

inverse(shadermatrix)*

scale(ringNoiseScale,ringNoiseScale,ringNoiseScale)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

rotate(ringRotAxis[0],ringRotAxis[1],ringRotAxis[2],

ringRotAngle+15)*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

FB *= ringNoiseStrength;

FB += project("wave.bw",

inverse(shadermatrix)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

4-27

rotate(ringRotAxis[0],ringRotAxis[1],ringRotAxis[2],

ringRotAngle)*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

// dark rings
if (FB[0] < lightToDark) {

// diffuse color
FB = darkWood;

FB.a = project("noise.bw",

inverse(shadermatrix)*

scale(darkGrainLong,darkGrainShort,1)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

FB = over(darkGrain);

FB *= dif;

varying color a = FB;

// specular gloss
FB = darkGloss;

FB.a = project("noise.bw",

inverse(shadermatrix)*

scale(darkGrainLong,darkGrainShort,1)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

FB = over(darkGrainGloss);

FB *= spec;

FB += a;

}
// light rings
else {

// diffuse color
FB = lightWood;

FB.a = project("noise.bw",

inverse(shadermatrix)*

scale(lightGrainLong,lightGrainShort,1)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

FB = over(lightGrain);

FB *= dif;

varying color a = FB;

// specular gloss

4-28

FB = lightGloss;

FB.a = project("noise.bw",

inverse(shadermatrix)*

scale(lightGrainLong,lightGrainShort,1)*

translate(ringCenter[0],ringCenter[1],ringCenter[2])*

scale(ringScale,ringScale,ringScale)*

translate(.5,.5,.5));

FB = over(lightGrainGloss);

FB *= spec;

FB += a;

}
}

References
[1] FOURNIER, A. Normal distribution functions and multiple surfaces. In Graphics

Interface ’92 Workshop on Local Illumination (May 1992), pp. 45–52.

[2] MCCOOL, M. D., ANG, J., AND AHMAD, A. Homomorphic factorization of
brdfs for high-performance rendering. In Proc. ACM SIGGRAPH (Aug. 2001).

[3] OLANO, M., HART, J., HEIDRICH, W., AND MCCOOL, M. Real-Time Shading.
AK Peters, 2002.

4-29

4 - 9

Chapter 5

DirectX
Chas Boyd

 5-1

Chapter 5 Hardware Shading with Direct3D

This white paper provides a short history and overview of the hardware accelerated

shading models and the mechanisms for unifying them that are provided by the DirectX

graphics library known as D3DX for use with the Direct3D low-level API.

Goals

Direct3D was developed to meet requirements for game programmers. They have two

primary needs:

1) Deliver novel visual experiences based on the increasing features and performance

available from graphics accelerator fabrication processes.

2) Support enough total systems to enable a reasonable sales volume.

This last requirement means the API needs to span hardware implementations along two

axes. It must not only support multiple manufacturers, but also the different generations

of hardware from each manufacturer. Due to the rapid rate of innovation used to deliver

novel experiences, there are often multiple generations of a given brand of hardware in

the consumer marketplace, and while the latest version of a given accelerator can be very

important to a game developer to target, the publishers of each game title would like to

take advantage of a larger installed base by including earlier hardware.

While creating an API that can help applications span multiple brands of hardware is

difficult, helping them span consecutive generations is actually the tougher problem.

Direct3D has typically sorted the features differences into those that can be

accommodated by relatively localized code branches (for which capability bits are

provided), and those that represent generational changes.

Much of the recent work on DirectX Graphics has been dedicated to helping applications

with this latter task. A key result of this work is the D3DX Effect Framework, a

mechanism for helping applications manage different rendering techniques enabled by

the various generations of hardware.

Effects

With the change in hardware model for multi-texture, it became clear that a successful

game would need to provide different code paths for each of the 2 or 3 generations of

hardware it targeted. This is because each new generation of hardware has not only more

advanced features, but also improved performance. This makes it very difficult to

emulate the newer generation�s features on older hardware. The performance of

emulating a technique is usually worse than the true technique, yet that older hardware

already has less performance.

For example, many multi-texture blending operations can be emulated by multi-pass

frame-buffer blending operations. However, the older hardware that requires multi-pass

5 - 1

 5-2

emulation is so much slower that to provide acceptable performance it really should be

used for fewer passes, not more.

As a result, separate code paths and in some cases separate art content (texures and

models) are often needed for each generation of hardware. This level of impact on

application architecture is non-trivial, however, many applications began to be

implemented using this type of architecture

Starting in DirectX7, support was provided for effects in the D3DX library of extensions

to Direc3D. Effects are a way of architecting rendering code that isolates and manages

implementation-specific details from the application, allowing it to more easily span

generations of hardware, or other variations in implementations. An effect object is a

software abstraction that gathers together a collection of different techniques which could

be used to implement a common logical visual effect.

There is very little policy associated with them. The different techniques used to

implement an effect can be selected based on any criterion, not just feature set. Criteria

such as performance, distance from the camera, user preferences etc. are also commonly

used, and sometimes combined together.

Effect objects can be loaded from and persisted in .fx files. This enables them to serve as

collections of binding code that map various rendering techniques into applications.

Because of the efficiency of the effect loading process, they can be dynamically loaded

while an application is running. This is extremely useful for efficient application

development. When an effect is modified while the application is running, it not-only

saves the time required to reload the app that would be required using a compile-based

process, but more importantly, the time for the app to reload all the models and textures it

is using.

Like OpenGL, Direct3D does not have a concept of geometric objects to which shaders

are assigned to directly. The API is designed to be a flexible substrate for

implementation of higher-level object models such as hierarchical scene graphs, cell-

portal graphs, BSPs, etc. The data model is based on vertices, textures, and the state that

controls the device, of which shaders are a part.

This flexibility is preserved in the Effect binding mechanism. Effects manage only the

state information, so the application is free to render its content using any low-level

rendering calls it considers appropriate.

Effects provide a clean way to make an application scale from single-texture to multi-

texture to programmable shaders. Or to manage hardware vs software vertex

transformation pipelines.

The following listings show the evolution of the hardware and API generations using

multi-texture, assembly level shaders, and the C-level language.

5 - 2

 5-3

DirectX 6 Multi-Texture

The following listing shows the code required to implement a specular per-pixel bump

map using the dependent read mechanism introduced in late 1998 in DirectX 6.0, and

supported in hardware on the Matrox G400 in 1999, the ATI Radeon in 2000, and the

nVidia GeForce 3 in 2001, among others.

/* Render()
Implements the following specular bump mapping rendering using multitexture syntax

0 MODULATE(EarthTexture, Diffuse); // light the base texture
1 BUMPENVMAP(BumpMap, _); // sample bump map (other arg ignored)
2 ADD(EnvMapTexture, Current); // sample envt map using bumped texcoords
 // and add to result
*/
HRESULT CMyD3DApplication::Render()
{
 m_pd3dDevice->Clear(0L, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,
 0x00000000, 1.0f, 0L);

 m_pd3dDevice->BeginScene();

 m_pd3dDevice->SetRenderState(D3DRS_WRAP0, D3DWRAP_U | D3DWRAP_V);

 m_pd3dDevice->SetTexture(0, m_pEarthTexture);
 m_pd3dDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 1);
 m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
 m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
 m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);

 m_pd3dDevice->SetTexture(1, m_psBumpMap);
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, 1);
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_BUMPENVMAP);
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_COLORARG1, D3DTA_TEXTURE);
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_COLORARG2, D3DTA_CURRENT);
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_BUMPENVMAT00, F2DW(0.5f));
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_BUMPENVMAT01, F2DW(0.0f));
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_BUMPENVMAT10, F2DW(0.0f));
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_BUMPENVMAT11, F2DW(0.5f));
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_BUMPENVLSCALE, F2DW(4.0f));
 m_pd3dDevice->SetTextureStageState(1, D3DTSS_BUMPENVLOFFSET, F2DW(0.0f));

 m_pd3dDevice->SetTexture(2, m_pEnvMapTexture);
 m_pd3dDevice->SetTextureStageState(2, D3DTSS_TEXCOORDINDEX, 0);
 m_pd3dDevice->SetTextureStageState(2, D3DTSS_COLOROP, D3DTOP_ADD);
 m_pd3dDevice->SetTextureStageState(2, D3DTSS_COLORARG1, D3DTA_TEXTURE);
 m_pd3dDevice->SetTextureStageState(2, D3DTSS_COLORARG2, D3DTA_CURRENT);

 m_pd3dDevice->SetStreamSource(0, m_pEarthVB, 0, sizeof(BUMPVERTEX));
 m_pd3dDevice->SetFVF(BUMPVERTEX::FVF);

 if(FAILED(m_pd3dDevice->ValidateDevice(&dwNumPasses)))
 {
 // The right thing to do when device validation fails is to try
 // a different rendering technique. This sample just warns the user.

5 - 3

 5-4

 m_bDeviceValidationFailed = TRUE;
 }
 else
 {
 m_bDeviceValidationFailed = FALSE;
 }

 // Finally, draw the Earth
 m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, m_dwNumSphereVertices);

 return;
}

5 - 4

 5-5

DirextX 8 Pixel Shaders

The following listing shows an effect file containing a single technique that implements

the homomorphic factorization method of McCool, Ang, and Ahmad for rendering

BRDFs. It uses DirectX 8 pixel shader version 1.1 and vertex shader version 1.1.

///
// BRDF Effect File
// Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved.
//

vector lhtR; // Light Direction from app
vector MaterialColor; // Object Diffuse Material Color

matrix mWld; // World
matrix mTot; // Total

texture BRDFTexture1;
texture BRDFTexture2;
texture BRDFTexture3;
texture ObjectTexture;

// These strings are for the app loading the fx file

// Technique name for display in viewer window:
string tec0 = "BRDF Shader";

// Background Color
DWORD BCLR = 0xff0000ff;

// model to load
string XFile = "sphere.x";

// BRDF technique
technique tec0
{
 pass p0
 {
 //load matrices
 VertexShaderConstant[0] = <mWld>; // World Matrix
 VertexShaderConstant[4] = <mTot>; // World*View*Proj Matrix

 //Material properties of object
 VertexShaderConstant[9] = <MaterialColor>;

 // Light Properties.

 // lhtR, the light direction, is input from the shader app
 // for BRDFs, these color constants are built into the texture maps
 VertexShaderConstant[16] = <lhtR>; // light direction

 Texture[0] = <BRDFTexture1>;
 Texture[1] = <BRDFTexture2>;
 Texture[2] = <BRDFTexture3>;

5 - 5

 5-6

 Texture[3] = <ObjectTexture>;

 // Only one colour being used
 ColorOp[1] = Disable;
 AlphaOp[1] = Disable;

 AddressU[0] = clamp; // set up clamping for cube maps
 AddressV[0] = clamp;
 AddressW[0] = clamp;

 AddressU[1] = clamp;
 AddressV[1] = clamp;
 AddressW[1] = clamp;

 AddressU[2] = clamp;
 AddressV[2] = clamp;
 AddressW[2] = clamp;

 // object�s detail texture
 AddressU[3] = wrap;
 AddressV[3] = wrap;

 // Definition of the vertex shader, declarations then assembly.
 VertexShader =
 decl
 {
 stream 0;
 float v0[3]; // Position
 float v3[3]; // Normal
 float v7[3]; // Texture Coord1
 float v8[3]; // Tangent
 }
 asm
 {
 vs.1.1 // version number

 m4x4 oPos, v0, c4 // transform point to projection space
 m4x4 r4,v0,c0 // transform point to world space
 m3x3 r0,v3,c0 // transform Normal to World Space, result in r0
 m3x3 r1,v8,c0 // transform Tangent to World Space

 mul r2,-r1.zxyw,r0.yzxw; // comptue binorm with cross product
 mad r2,-r1.yzxw,r0.zxyw,-r2;

 // get negative view vector
 add r4.xyz,-r4.xyz,c10
 dp3 r5.x,r4.xyz,r4.xyz
 rsq r5.x,r5.x
 mul r4.xyz,r5.xxx,r4.xyz

 //compute the half angle and normalize
 add r5.xyz,r4.xyz,-c16
 dp3 r6.x,r5.xyz,r5.xyz
 rsq r6.x,r6.x
 mul r5.xyz,r6.xxx,r5.xyz

5 - 6

 5-7

 //now inverse transform everything
 //r1 = tangent
 //r2 = binormal
 //r0 = normal

 //t0 = view
 dp3 oT0.x,r4,r1
 dp3 oT0.y,r4,r2
 dp3 oT0.z,r4,r0

 //t1 = -light
 dp3 oT1.x,-c16,r1
 dp3 oT1.y,-c16,r2
 dp3 oT2.z,-c16,r0

 //t2 = half angle
 dp3 oT2.x,r5,r1
 dp3 oT2.y,r5,r2
 dp3 oT2.z,r5,r0

 //object might have its own texture
 mov oT3.xy,v7.xy

 //move diffuse color in
 mov oD0,c9
 };

 pixelshader =
 asm
 {
 ps.1.1
 tex t0
 tex t1
 tex t2
 tex t3

 mul r0,t0,t1 // combine 1st 2 brdf factors
 mul r0,r0,t2 // multiply in 3rd factor
 mul r0,r0,t3 // apply detail texture
 mul r0,r0,v0 // light using diffuse primary color
 };
 }
}

5 - 7

 5-8

DirectX 9 High Level Shading Language

The following is a very simple wood shader from the Renderman Companion.

Implemented as a DirectX 9.0 effect file, it demonstrates the integration of the �C�-like

high-level shading language into the effect framework. This should run in 1 pass of the

pixel shader 2.0 model supported in DirectX 9.0.

fx.2.0

//
// Effect parameters ///
//

float ringscale = 10.0f;
float point_scale = 1.0f, turbulence = 1.0f;

vec3 lightwood = vec3(0.3f, 0.12f, 0.03f);
vec3 darkwood = vec3(0.05f, 0.01f, 0.005f);

float Ka = 0.2;
float Kd = 0.4;
float Ks = 0.6;
float roughness = 0.1;

vec3 ambient_color;
vec3 diffuse_color;
vec3 specular_color;

volumetexture noise;

vec3 L;
vec3 I;

//
// Renderman-like helper functions ///
//

float smoothstep(float a, float b, float s)
{
 float s2 = s * s;
 float s3 = s * s2;

 float sV1 = 2.0f * s3 - 3.0f * s2 + 1.0f;
 float sT1 = s3 - 2.0f * s2 + s;
 float sV2 = -2.0f * s3 + 3.0f * s2;
 float sT2 = s3 - s2;

 return s < 0.0f ? a : s > 1.0f ? b : sV1 * a + sT1 + sV2 * b + sT2;
}

vec3 diffuse(vec3 N)
{
 return diffuse_color * dot(N, L)
}

5 - 8

 5-9

vec3 specular(vec3 N, vec3 eye, float roughness)
{
 vec3 H = (L + eye) / len(L + eye);
 return specular_color * pow(dot(H, N), 1 / roughness);
}

//
// Wood Shader ///
//

struct PS_INPUT
{
 vec3 Color : COLOR0;
 vec3 Position : TEXCOORD0;
 vec3 Normal : TEXCOORD1;
};

struct PS_OUTPUT
{
 vec4 Color : COLOR0;
};

PS_OUTPUT Wood(const PS_INPUT v)
{
 /* Perturb P to add irregularity */
 vec3 PP = v.Position * point_scale;
 PP += sample3d(noise, PP) * turbulence;

 /* Compute radial distance r from PP to axis of tree */
 float r = sqrt(PP.y * PP.y + PP.z * PP.z);

 /* Map radial distance r into ring position [0,1] */
 r *= ringscale;
 r += abs(sample1d(noise, r) * turbulence);
 r = frc(r);

 /* Use r to select wood color */
 r = smoothstep(0.0f, 0.8f, r) - smoothstep(0.83f, 1.0f , r);

 /* Shade using r to vary brightness of wood grain */
 PS_OUTPUT o;

 o.Color.rgb = (ambient_color * Ka + diffuse(v.Normal) * Kd) *
 lerp(lightwood, darkwood, r) * v.Color.a +
 specular(v.Normal, -I, roughness) * (Ks * (0.3f * r + 0.7f));

 o.Color.a = v.Color.a;

 return o;
};

5 - 9

 5-10

Additional Resources

Chas. Boyd

chasb@microsoft.com

DirectX email contact for applications to beta program:

directx@microsoft.com

Developer web site with links, whitepapers, and SDK downloads:

http://msdn.microsoft.com/DirectX

Presentations on techniques at previous conferences:

http://www.microsoft.com/mscorp/corpevents/meltdown2001/presentations.asp

http://www.microsoft.com/mscorp/corpevents/gdc2001/developer_day.asp

5 - 10

Per-Pixel Lighting

Philip Taylor

Microsoft Corporation

November 13, 2001

Download the source code for this article.

Note This download requires DirectX 8.1.

This column is based on material contained in the "Per-Pixel Lighting" talk, developed and delivered by

Dan Baker and Chas Boyd at GDC 2001. In the interests of space, I am not going to cover several

advanced topics covered in the slide material (available at

http://www.microsoft.com/mscorp/corpevents/meltdown2001/presentations.asp and

http://www.microsoft.com/corpevents/gdc2001/developer_day.asp) like anisotropic lighting, and per-pixel

environment mapping.

Instead, this column will focus on the fundamentals of pixel lighting, the standard models, the process of

defining new models, and provide an example of defining and implementing a new lighting model using

pixel shaders. It's in the area of custom or "do-it-yourself" lighting models that pixel shaders really

shine�but lets not get ahead of ourselves.

Fundamentals of Per-Pixel Lighting

First, I assume everyone is familiar with basic diffuse and specular lighting. This assumes a physical

model, like that shown in Figure 1. Let's examine the standard lighting model, and define the system and

the terminology.

Figure 1 below is a diagram showing the standard lighting setup used to describe Direct3D's fixed-function

lighting. There is a vertex, defined by the position P, a Light, defined by the L vector, the View position

defined by the V vector, and the Normal defined by the N vector. In addition, the diagram shows the "half-

vector" H, part of the Blinn simplification to Phong shading. These elements are sufficient to describe both

the diffuse and specular reflectance lighting system.

5 - 11

Figure 1. Standard lighting diagram

P = Vertex position
N = unit normal vector of Vertex P
L = unit vector from Light to the Vertex position
V = unit vector from Vertex P to the View position V
R = unit vector representing light reflection R
H = unit vector halfway H, between L and V, used for Blinn simplification

Diffuse lighting uses the relationship N dot L, where dot is the dot product, to determine the diffuse

contribution to color. The dot product represents the cosine of the angle between the two vectors, so

when:

 The angle is acute, or small, the cosine value is large, and so this component contribution to the

final color is larger.

 The angle is obtuse, or large, the cosine value is small, and so this components contribution to

the final color is smaller.

The Phong formulation for specular lighting uses a reflected vector R, representing the direction the light

is reflected, with the Light vector L, R dot V, raised to a power n. The power value n allows simulation of a

variety of surfaces, so when:

 The power value n is large, the resulting highlight is tight and shiny, simulating a glossy surface.

 The power value n is small, the resulting highlight is large and dull, simulating a less glossy

surface.

The Blinn simplification replaces the R vector with the vector H halfway between V and L, and modifies the

power value n to produce a result sufficiently similar to the more complex calculation for good image

5 - 12

quality purposes�but at a significantly lower computational cost, since H is much cheaper to calculate

than R.

Direct3D lighting, whether in hardware or software, uses these equations at the vertex level.

Unfortunately, vertex lighting can have two undesired properties:

1. Vertex lighting requires extra tessellation to look good; otherwise the coarseness of the

underlying geometry will be visible.

2. Vertex lighting causes all applications that use it to have a similar look.

Tessellation becomes critical for vertex lighting to look good, since the triangle rasterizer linearly

interpolates the vertices without a deep understanding of local geometry. If the geometry is too coarse, or

the geometry contains a lot of variation in a short distance, then the hardware can have a problem

producing values that result in good image quality. Increasing tessellation, however, reduces

performance. Couple that with the fact that vertex lighting always has a telltale visual signature, and it's

rarely compelling. Exceptions are when vertex lighting is used for global ambient, or in addition to per-

pixel lighting.

Now, with that understanding of lighting, it is easier to see what all the fuss is about with respect to per-

pixel lighting. Of course everyone wants per-pixel lighting, as it really is that much better.

There are two approaches for per-pixel lighting:

1. Pixel lighting in world space.

2. Pixel lighting in tangent space.

Now, in looking at approach two, you may say, "Wait a minute there, Phil, what is this 'tangent space,'

and where did that come from?"

Per-pixel lighting uses texture mapping to calculate lighting. That's not new, as light mapping using

textures has been utilized in games for years to generate lighting effects. What is new, however, is that in

pixel shaders, the values in the texture map can be used to perform a lighting calculation, as opposed to a

texture-blend operation.

Now that a lighting calculation is involved, great care must be taken to ensure that the lighting

computation is done in the correct 3d basis (also called a coordinate space, or "space" for short). All

lighting math must be calculated in the same coordinate space. If a normal is in a different space than the

light direction, any math between them is bogus. It would be like multiplying feet by meters; it just

doesn't make sense.

5 - 13

With this requirement in mind, any lighting approach needs to manipulate the source values to make sure

all components of the calculations are in the same space. In our case here, there are two sets of inputs:

1. Normal and bump maps, stored in texture or "tangent" space.

2. Light directions and environment maps, stored in object or world space.

For normal maps, the texels in a texture map don't represent colors, but vectors. Figure 2 below shows

the coordinate space the normals are in. The standard u and v directions along the textures width and

height are joined with a "w" direction that is normal to the surface of the texture, to finish the basis

(u,v,w). That is, a texel of 1,0,0 actually translates to 1 component of the u vector, 0 of the v vector, and

0 of the w vector. If u, v, and w are perpendicular to each other, this is called an orthonormal basis. This

generates a texture space basis, which by convention is called the "tangent space basis."

One thing you may have wondered about u, v, and w, is where in the world are these vectors? At first, it

looks like they are part of the texture. In reality, these vectors get pasted onto the real world object that

is being textured. At each vertex, u, v, and w might point in an entirely different direction! So, two places

on a mesh that have the same piece of texture might have completely different vectors, since u, v, and w

are different. Remember, an x, y, z vector in the normal map really means x*u + y*v + z*w. If u, v, w

are different, then the vectors are different even if x, y and z are the same. The hard part is finding u, v,

and w; after that, everything else is pretty straightforward.

Figure 3 shows the relative coordinate spaces for both objects and texture maps. In either approach to

pixel lighting, all source data needs to be moved into one space or the other, either from tangent space

into world space, or from world space into tangent space.

5 - 14

Figure 2. Texture coordinate system

Figure 3. Basis computation diagram

Now that a tangent space (u,v,w) has been defined (more on how to find these vectors later), it's time to

look at world-space pixel lighting. In world-space pixel lighting, it's necessary to transform the texture

data�for example, the texture map texels into world space. Here the light vectors are not transformed in

the vertex shader; they are left in world space, as it's the texture data that needs transformation. Simply

pass the tangent basis transform into the pixel shader as three texture coordinates. Note that it's possible

to generate the binormal by a cross product to save bandwidth. The iterators will interpolate this matrix to

each pixel. Then use the pixel-shader and the tangent space basis to perform per-pixel lighting.

Tangent space pixel lighting is the reverse. Here it's necessary to transform the light and environment

map data into tangent space. The light vectors are transformed in the vertex shader, and then passed

down to the pixel shader. The environment map data is transformed in the pixel shader, and then the

pixel shader performs per-pixel lighting.

Let me discuss one other terminology convention. The normal, the w, and the z axis vectors are all

defined to be the same vector; the tangent is the u-axis vector, and the binormal is the v-axis vector. It's

possible, and necessary, to pre-compute the tangent vector u as the vector that points along the u-axis of

the texture at every point.

Now it's time to examine the tangent space transformation process.

First, recognize this is an inverse transformation. From linear algebra, if one has an orthonormal basis, the

inverse matrix is the transpose. So, given (u,v,w) are the basis vectors of the surface, and L is the light,

the transform is:

 [U.x U.y U.z] * [-L.x]

5 - 15

 [V.x V.y V.z] * [-L.y]

 [w.x W.y W.z] * [-L.z]

Expanding out, this becomes

 L.x' = DOT3(U,-L)

 L.y' = DOT3(V,-L)

 L.z' = DOT3(W,-L)

where

U = the tangent along the x-axis of the texture;
V = the normal;
W = the binormal U x V (cross product).

Note that one performs the dot product with the negative of the Light direction.

Computing a tangent space vector is just like computing a normal. Remember that w is defined as the

normal, so we should already have that piece of information. Now, we need to generate u and v. To

generate the tangent space basis vectors (u and v), use the following equation:

 Vec1 = Vertex3 � Vertex2

 Vec2 = Vertex1 � Vertex2

 DeltaU1 = Vertex3.u - Vertex2.u

 DeltaU2 = Vertex1.u - Vertex2.u

 DirectionV = |DeltaU2*Vec1-DeltaU1*Vec2|

 DirectionU = |DirectionV x Vertex.N|

 DirectionW = |DirectionU x DirectionV|

Where

X indicates taking a cross product;
|| indicates taking a unit vector;
Vertex1-3 are the vertices of the current triangle.

Usually, tangents and normals are calculated during the authoring process, and the binormal is computed

in the shader (as a cross product). So, the only field we are adding to our vertex format is an extra u

vector. Additionally, if we assume the basis is orthonormal, we don't need to store v either, since it is just

u cross w.

5 - 16

A couple of points to keep in mind: Tangents need to be averaged�and be careful about texture wrapping

(since it modifies u and v values). Look for D3DX in DirectX 8.1 to include new methods to help with

tangent space operations; check the documentation.

For character animation, as long as you skin the normals and the tangents, this technique works fine.

Again, generate the binormal in the shader after skinning, so you can skin two vectors instead of three.

This will work just fine with indexed palette skinning and 2/4-matrix skinning, as well as with vertex

animation (morphing). In terms of performance, tangent space lighting is good, since the transform can

be done at a per-vertex level. It's less clocks than vertex lighting, and the per-pixel dp3 dot product is as

fast as any pixel operation, so there is no loss of performance there either. To perform diffuse and

specular in the same pass, compute the light vector and the half-angle vector, and transform both into

tangent space. The perturbation and dot product are then done in the pixel pipeline, either in the pixel

shader or by using multi-texture.

Below is a section of a vertex shader that shows how to generate a tangent space light vector:

// v3 is normal vector

// v8 is tangent vector

// c0-c3 is World Transform

// c12 is light dir

//tangent space basis generation

m3x3 r3,v8,c0 // transform tan to world space

m3x3 r5,v3,c0 // transform norm to world space

mul r0,r3.zxyw,r5.yzxw // cross prod to generate binormal

mad r4,r3.yzxw,r5.zxyw,-r0

dp3 r6.x,r3,-c12 // transform the light vector,

dp3 r6.y,r4,-c12 // by resulting matrix

dp3 r6.z,r5,-c12 // r6 is light dir in tan space

This can simply be repeated for any vector that needs to be transformed to tangent space.

5 - 17

One other thing to be aware of is the range of values required by dot product lighting. Dot product

operations contain data represented in the range [-1,1] to perform lighting operations, or signed data.

Standard texture formats contain data represented in the range [0,1] to map color values, and thus

contain unsigned data. Both pixel shaders and the fixed-function pipeline define modifiers that remap

texture data to bridge this gap so texture data can be used effectively in dot product operations. Pixel

shaders define the _bx2 argument modifier, that remaps input data from unsigned to signed. So the

input arguments to the dot product operation usually have this modifier applied to them. It's also useful to

clamp the results of the dot product to black using the _sat instruction modifier. Here is a typical dot

product pixel shader instruction:

dp3_sat r0, t0_bx2, v0_bx2 // t0 is normal map, v0 is light dir

For the fixed-function pipeline, the similar process is done with the texture argument modifier flag

D3DTA_COMPLEMENT for texture inputs, and the texture operators D3DTOP_ADDSIGNED for results in

the range [-0.5,0.5], and D3DTOP_ADDSIGNED2X for results in the range [-1.0,1.0] range.

With this understanding of the basics of per-pixel lighting, it's time to examine the standard lighting

models, and how diffuse and specular lighting work in pixel shaders.

Standard Lighting Models

The standard lighting models include diffuse and specular lighting. Each lighting model can be done with

both pixel shaders and fixed-function multi-texture fallback techniques. Understanding these techniques

and the fallbacks allows development of a shader strategy that can cope with the differing generations of

graphics cards. DirectX 6.0 generation cards are multi-texture capable�almost all can do subtractive

blending, and some can do dot product blending. Examples include TNT2, Rage128, Voodoo 5, and G400.

DirectX 7.0 generation cards are both hardware transform and multi-texture capable, and almost all can

do both subtractive and dot product blending. Examples include geForce2 and Radeon. All DirectX 8.0

cards can do vertex and pixel shaders in hardware. Examples include geForce3 and Radeon8500.

Per-pixel diffuse is consistent with standard lighting models with no specular. It's nice, because there is no

need to modulate against another lighting term; each pixel is correctly lit after the per-pixel diffuse

calculation. Note that filtering can be a major problem, since normals cannot be filtered for a

variety of reasons. Below is a vertex shader fragment to perform setup for per-pixel diffuse lighting,

including calculating the light direction in tangent space, biasing it for the per-pixel dot product, and

setting up the texture coordinates for the pixel shader.

//v0 = position

//v3 = normal (also the w vector)

5 - 18

//v7 = texture coordinate

//v8 = tangent (u vector)

vs.1.1

//tranform position

m4x4 oPos,v0,c4

//tsb generation

m3x3 r3,v8,c0 //gen normal

m3x3 r5,v3,c0 //gen tangent

//gen binormal via Cross product

mul r0,-r3.zxyw,r5.yzxw;

mad r4,-r3.yzxw,r5.zxyw,-r0;

//diffuse, transform the light vector

dp3 r6.x,r3,-c16

dp3 r6.y,r4,-c16

dp3 r6.z,r5,-c16

//light in oD0

mad oD0.xyz,r6.xyz,c20,c20 //multiply by a half then add half

//tex coords

mov oT0.xy, v7.xy

mov oT1.xy, v7.xy

Next, a typical diffuse pixel shader is shown below:

ps.1.1

5 - 19

tex t0 //sample texture

tex t1 //sample normal

//diffuse

dp3_sat r1,t1_bx2,v0_bx2 //dot(normal,light)

//assemble final color

mul r0,t0, r1 //modulate against base color

This is prototypical usage of dp3 to calculate N dot L. Conceptually, this is a good way to lay out the pixel

shader. Figure 4 contains a screenshot of this shader in action. Notice the separation of the calculation

and final color assembly. The following renderstates are used, shown in effects file format syntax:

VertexShaderConstant[0] = World Matrix (transpose)

VertexShaderConstant[8] = Total Matrix (transpose)

VertexShaderConstant[12] = Light Direction;

VertexShaderConstant[20] = (.5f,.5f,.5f,.5f)

Texture[0] = normal map;

Texture[1] = color map;

Note how simple the pixel shader is. Figure 4 shows an example diffuse per-pixel lighting image. The take-

away from this is that with per-pixel diffuse lighting, it is easy to get good-looking results. All pixel shader

cards support the dp3 operator, so this technique is good to go on pixel shader hardware.

For previous generation cards, two primary fallbacks exist. The first fallback is to use the

D3DTOP_DOTPRODUCT3 fixed-function operator, which some of the better previous generation cards

support, since this operator was first enabled in DirectX 6.0. Be sure to check the

D3DTEXOPCAPS_DOTPRODUCT3 capability bits for support of this multi-texture capability. Using

ValidateDevice() is also a good idea. Below is the multi-texture setup (using the effects framework

syntax) for a D3DTOP_DOTPRODUCT3 fixed-function operation

ColorOp[0] = DotProduct3;

ColorArg1[0] = Texture;

5 - 20

ColorArg2[0] = Diffuse;

ColorOp[1] = Modulate;

ColorArg1[1] = Texture;

ColorArg2[1] = Current;

VertexShaderConstant[0] = World Matrix (transpose)

VertexShaderConstant[8] = Total Matrix (transpose)

VertexShaderConstant[12] = Light Direction;

Texture[0] = normal map

Texture[1] = color map;

Where colorop indicates the texture stage operation, and colorarg[n] indicates the texture stage

arguments. MIP mapping and filtering need to be set as well, but I ignore these settings due to space

considerations. Remember, the D3DTOP_DOTPRODUCT3 operator in the fixed-function pipeline

automatically applies the _sat and _bx2 operations automatically, which means:

 You must use biased art for the normal maps for _bx2 to generate correct results.

 The automatic use of _sat (clamping) means no signed result can be generated.

5 - 21

Figure 4. Diffuse per-pixel lighting

The second fallback is to use emboss bump mapping. The only hardware requirement is for a dual texture

unit with a subtract operation, as shown by the presence of the D3DTEXOPCAPS_SUBTRACT capability

bit. Again, whenever using the fixed-function multi-texture pipeline, it's a good idea to use

ValidateDevice(). Emboss bump-mapping works by shifting a height map in the direction of the

light vector, and subtracting this from the base map. The results can be very convincing, but can take

quite an effort to fine tune. A vertex shader fragment for a typical emboss operation is shown below:

//v0 = position

//v3 = normal (also the w vector)

//v7 = texture coordinate

//v8 = tangent (u vector)

5 - 22

vs.1.1 // for emboss

m4x4 oPos, v0,c08 // generate output position

//diffuse

m3x3 r3, v8, c0 // transform tan to world space

m3x3 r5, v3, c0 // transform norm to world space

mul r0,r3.zxyw,r5.yzxw // cross prod to generate binormal

mad r4,r3.yzxw,r5.zxyw,-r0

dp3 r6.x,r3,c12 // tangent space light in r6

dp3 r6.y,r4,c12

// dp3 r6.z,r5,c12 don't need this

// -only x and y shifts matter

// set up the texture, based on light direction:

mul r1.xy, r6.xy, -c24.xy

mov oT0.xy, v7.xy // copy the base height map

add oT1.xy, v7.xy, r1.xy // offset the normal height map

// simple dot product to get global darkening effects:

dp3 oD0.xyz,v3.xyz,c12.xyz

Next is the multi-texture state setup (again using the effects framework syntax) for a

D3DTOP_ADDSIGNED fixed-function operation, using the complement input argument modifier flag:

ColorOp[0] = SelectArg1;

ColorArg1[0] = Texture;

ColorOp[1] = AddSigned;

5 - 23

ColorArg1[1] = Texture | Complement;

ColorArg2[1] = Current;

VertexShaderConstant[0] = World Matrix (transpose)

VertexShaderConstant[8] = Total Matrix (transpose)

VertexShaderConstant[12] = Light Direction;

VertexShaderConstant[24] = Offset Constant

Texture[0] = base height map;

Texture[1] = normal height map;

Again, MIP mapping and filtering need to be set as well, but I ignore these settings due to space

considerations. In conclusion, emboss-style bump mapping can be used for a diffuse fallback technique for

hardware that does not support the dot product multi-texture operator. This includes most DirectX 6.x

generation cards�a huge percentage of the installed base. For ideal results, this technique requires

modified artwork, and textures should be brightened on load. An alternative is to use a

D3DTOP_MODULATE2X operator to scale the result up, which has the visual effect of brightening. Also

note that filtering can be applied to this technique more easily than to normal maps, so this technique

may result in a better appearance than the dot product multi-texture technique, even on hardware that

supports dot product operations.

Per-pixel specular is similar to diffuse, but requires a pixel shader. Instead of the light direction, an

interpolated half-angle vector H is used; which is computed in the vertex shader. In the pixel shader, the

H is dotted with the pixel normal, and then raised to a pre-determined power. The specular result is added

to the other passes. Also, remember that there is only one output value of a pixel shader, in r0, so make

sure to add the specular result into r0.

One question you may be asking at this point: How is exponentiation performed? Two techniques are

used, multiply-based and table-based. One is simpler and is acceptable for small exponents, and one is

more work, but looks nicer for higher exponents. Both techniques I cover here use the following

renderstates (again using effects framework syntax):

VertexShaderConstant[0] = World Matrix

VertexShaderConstant[8] = Total Matrix

5 - 24

VertexShaderConstant[12] = Light Direction

VertexShaderConstant[14] = Camera Position (World)

VertexShaderConstant[33] = (.5f,.5f,.5f,.5f)

Texture[0] = normal map

Texture[1] = color map

Now, it's time to examine the two pixel shader specular techniques, starting with the multiply-based

exponentiation technique. Below is a vertex shader fragment that shows (in addition to the diffuse actions

of calculating the light direction in tangent space, biasing it for the per-pixel dot product, and setting up

the texture coordinates for the pixel shader) the actions of computing the half vector, using the view

direction and the light direction, and scaling/biasing it for the dot product calculations used by multiply-

based exponentiation:

vs.1.1

//tranform position

m4x4 oPos,v0,c4

//tsb generation

m3x3 r3,v8,c0 //gen normal

m3x3 r5,v3,c0 //gen tangent

//gen binormal via Cross product

mul r0,-r3.zxyw,r5.yzxw;

mad r4,-r3.yzxw,r5.zxyw,-r0;

//specular

m4x4 r2,v0,c0 //transform position

//get a vector toward the camera

add r2,-r2,c24

5 - 25

dp3 r11.x, r2.xyz,r2.xyz //load the square into r11

rsq r11.xyz,r11.x //get the inverse of the square

mul r2.xyz, r2.xyz,r11.xyz //multiply, r0 = -(camera vector)

add r2.xyz,r2.xyz,-c16 //get half angle

//normalize

dp3 r11.x,r2.xyz,r2.xyz //load the square into r1

rsq r11.xyz,r11.x //get the inverse of the square

mul r2.xyz,r2.xyz,r11.xyz //multiply, r2 = HalfAngle

//transform the half angle vector

dp3 r8.x,r3,r2

dp3 r8.y,r4,r2

dp3 r8.z,r5,r2

//half-angle in oD1

mad oD1.xyz, r8.xyz,c20,c20 //mutiply by a half, add half

//tex coords

mov oT0.xy, v7.xy

mov oT1.xy, v7.xy

Below is a pixel shader fragment that shows per-pixel specular, using the multiply-based exponentiation

technique:

ps.1.1 // pow2 by multiplies

tex t0 // color map

tex t1 // normal map

// specular lighting dotproduct

5 - 26

dp3_sat r0,t1_bx2,v1_bx2 // bias t0 and v1 (light color)

mul r1,r0,r0 // 2nd power

mul r0,r1,r1 // 4th power

mul r1,r0,r0 // 8th power

mul r0,r1,r1 // 16th power!

//assemble final color

mul r0,r0,t0 // modulate by color map

Note the use of the _bx2 modifier. Again, this is to enable the input data to be processed as a signed

quantity, while reserving dynamic range (used by the specular calculation) before overflow clamping that

can occur on implementations limited to the range [-1, 1]. Figure 5 shows an image generated using

multiply-based specular exponentiation. Notice the banding in the highlight. This is due to loss of precision

in the calculations, since each result channel is only 8-bits. Here is where higher precision texture formats

and higher precision for internal calculations will increase image quality. In conclusion, multiply-based per-

pixel specular is easy to implement, but can involve precision problems, so don't try to use the technique

for powers greater than 16. On graphics chips with higher precision, this may not be an issue.

The next technique is table-lookup based specular exponentiation. The example used here performs this

operation with a 3x2 table. The texture is used as a table of exponents, storing the function y = pow (x).

5 - 27

Figure 5. Multiply-based specular exponentiation

This technique also uses the dependent texture read capability of the texm3x2tex instruction. Note

the 3x2 multiply is also 2 dot products, so this technique can do specular and diffuse, or two light sources,

simultaneously. Below is the vertex shader for this technique:

vs.1.1

//tranform position

m4x4 oPos,v0,c4

//tsb generation

m3x3 r3,v8,c0 //transform normal

m3x3 r5,v3,c0 //and tangent

5 - 28

//Cross product

mul r0,-r3.zxyw,r5.yzxw;

mad r4,-r3.yzxw,r5.zxyw,-r0;

//specular

m4x4 r2,v0,c0 //transform position

//get a vector toward the camera

add r2,-r2,c24

dp3 r11.x,r2.xyz,r2.xyz //load the square into r11

rsq r11.xyz,r11.x //get the inverse of the square

mul r2.xyz,r2.xyz,r11.xyz //multiply, r0 = -(camera vector)

add r2.xyz,r2.xyz,-c16 //get half angle

//normalize

dp3 r11.x,r2.xyz,r2.xyz //load the square into r1

rsq r11.xyz,r11.x //get the inverse of the square

mul r2.xyz,r2.xyz,r11.xyz //multiply, r2 = HalfAngle

//transform the half angle vector

dp3 r8.x,r3,r2

dp3 r8.y,r4,r2

dp3 r8.z,r5,r2

//tex coords

mov oT0.xy, v7.xy //coord to samp normal from

5 - 29

mov oT1.xyz,r8 //Not a tex coord, but half

mov oT2.xyz,r8 //angle

mov oT3.xy, v7.xy

The table-lookup vertex shader is identical to the multiply-based vertex shader through the half-angle

normalization calculation. From there, this technique uses texture coordinates to pass down vectors, as

well as true texture coordinates used to index the color and normal maps. The half-angle is passed down

as texture coordinates for stage 2, then texture coordinates for stage 1 are used to pass down the light

direction, and texture coordinates for stage 0 and stage 3 are used for the normal and color maps

respectively.

Next is shown the 3x2 table-lookup specular lighting pixel shader:

ps.1.1 // exponentiation by table lookup

// texcoord t1 // the diffuse light direction

// texcoord t2 // half-angle vector

// texture at stage t2 is a table lookup function

tex t0 // sample the normal map

texm3x2pad t1, t0_bx2 // 1st row of mult, 1st dotproduct=u

texm3x2tex t2, t0_bx2 // 2nd row of mult, 2nd dotproduct=v

//asemble final color

mov r0,t2 // use (u,v) above to get intensity

mul r0,r0,t3 //blend terms

The key detail of this shader is the use of the texm3x2tex instruction with the texm3x2pad

instruction to perform a dependent read. The texm3x2pad instruction is used in conjunction with other

texture address operators to perform 3x2 matrix multiplies. It is used to represent the stage where only

the texture coordinate is used, so there is no texture bound at this stage (in this shader, that is, t1). The

input argument, t0, should still be specified.

5 - 30

The texm3x2pad instruction takes the specified input color (t0 here) and multiplies that by the

subsequent stages' (t1 here) texture coordinates (u, v, and w) to calculate the 1st row of the multiply (a

dot product) to generate a u coordinate. Then the texm3x2tex instruction takes the specified input

color (t0 again) and the texture coordinates of the stage specified (t2 here) to calculate the second row

of the multiply (again a dot product) to generate the v coordinate. Lastly, this stage's texture (t2 here)

can be used to sample the texture by a dependent read at (u, v) to produce the final color.

That leaves the question of how to generate the lookup-table texture. Using D3DX, one could use the

following code fragment to generate the table-lookup texture:

void LightEval(D3DXVECTOR4 *col, D3DXVECTOR2 *input

 D3DXVECTOR2 *sampSize, void *pfPower)

{

 float fPower = (float) pow(input->y,*((float*)pfPower));

 col->x = fPower;

 col->y = fPower;

 col->z = fPower;

 col->w = input->x;

}

D3DXCreateTexture(m_pd3dDevice, 256,256, 0,0,

 D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &pLightMap100);

float fPower = 100;

D3DXFillTexture(m_pLightMap100,LightEval,&fPower);

Figure 6 below shows the results of table-lookup specular exponentiation. A careful examination does

indeed show less banding effects and a better-looking image. This technique will support exponents

greater than 100, which is important for some visual effects. There is higher precision in the texture read

unit, and the table-lookup texture ends up nicely filtered, so that the banding is reduced to a tolerable

level. Note that other functions can be used besides exponents.

5 - 31

Figure 6. Table lookup specular exponentiation

The fallback using the fixed-function multi-texture pipeline is an analog of emboss for the specular term,

where the light map highlight is subtracted from the height-field normal map. Specular highlights do need

to be manually positioned, but that's not hard to do in the vertex shader. Then composite the values in

the pixel shader using subtract, and add the result as the per-pixel specular term. Figure 7 shows a

diagram of the two textures and how the subtract result gives the desired effect.

5 - 32

Figure 7. Specular emboss fallback diagram

In the interests of space, I am skipping the implementation of the specular fallback; you should be getting

the idea. That's the end of the coverage of the standard diffuse and specular per-pixel lighting models,

and how to realize them in pixel shaders. Now it's on to "do-it-yourself" lighting models, where I show

how to develop your own, custom lighting models and implement them.

Custom Per-Pixel Lighting

With this summary of techniques for the legacy�that is, with standard lighting models behind us�it's now

time to consider custom, "do-it-yourself" lighting models, or DIY lighting. The beauty of pixel shader

hardware is that it frees the developer from being stuck with the legacy lighting model, and opens up a

brave new world of custom lighting. Remember, the legacy lighting models are just a set of equations

someone came up with at some point in time that did a reasonable job of modeling the physics of lighting.

There is no magic there. So do not be restricted by the basic lighting model. While diffuse and specular

are easy to calculate, and generally produce acceptable results, they do have the drawback of producing a

result that looks overly familiar. When the goal of advanced lighting is to stand out, looking the same is a

major drawback.

So what does DIY lighting mean? It means not being bound by the basic lighting model, and instead using

creativity and an understanding of the principles of the basic lighting tasks. Using the SIGGRAPH

literature, hardware vendor Web sites, and information about game engine rendering approaches, there

are huge amounts of material available as a guide to interesting alternative approaches to the basic

diffuse and specular lighting model.

5 - 33

The key is to understand the process of the basic lighting model, and to use a process in developing a

lighting model. This allows a consistent basis upon which to evaluate lighting ideas. This discussion

focuses on local lighting, since there isn't space to cover attenuation effects, atmospheric effects, or

anything else.

The process of the basic lighting model is based on the physics of lighting. Figure 8 shows the physical

model the calculations are intended to reproduce. There is a light source generating light, a surface

geometry upon which the incident light energy is received, and upon which reflected light departs (called

the incident and reflectant geometry), and a camera to record the lighting.

Figure 8. Lighting Process

Incident angle and reflection angle play a key part in the lighting calculation. The geometries' interaction

with light is also controlled by a surface model that defines the physical properties of the surface that

lighting is incident on and reflected from. There are many different elements that can be used in surface

models. The most common model is the Lambert model for the diffuse light term. The Lambert model

defines microfacets across the surface where intensity depends on input energy and the area of the

microfacets perpendicular to the light direction. Lambert diffuse is easily calculated using the dot product.

Figure 9 illustrates the Lambert model. The key point is that there is a physical basis for this model, from

which the calculations can be identified.

5 - 34

Figure 9. Lambert Model

With an understanding of how this works in the basic lighting model, lets begin an exploration of 'DIY"

Lighting. In a simple "DIY" evaluation process, first, there is an identification stage. Here you analyze

what the key effects you wish to generate in each scene are. Then these are prioritized. Once this has

been accomplished, that data can be used to characterize the lighting environment for each scene and

each effect.

How many light sources are needed for these effects? What shape are they? What shadows, and what

reflections result? Now with the key lighting effects identified and characterized, algorithms to implement

the effect need to be generated. In those algorithms, terms that make important contributions to the final

result are kept, and terms that don't contribute significantly to image quality are dropped.

Experimentation is usually need to determine this, but in some cases, running limit calculations can lead

to an expectation that a terms contribution is meaningful or meaningless. These pieces can often be

defined and tested independently, but at some point the individual parts will need to be blended together

for a "final" evaluation of the model. Another part of the process consists of determining whether a piece

of the calculation is object-based (author time calculation), vertex-based (vertex shader time calculation),

or pixel-based (pixel shader time calculation).

Finally, understanding the range of values that serve as input to a model, and understanding the expected

range of output values, can lead to finding equivalencies substitutions in making calculations, where the

substitute calculation is simpler conceptually, simpler in cost, or simply good enough. This is an important

point, to not be hide-bound by convention, and instead keep an open mathematical mind to take

advantage of whatever one can.

5 - 35

So, with that in mind, it's time to walk through the process for a simple yet effective 'DIY" lighting model.

Here, local lighting is the focus, attenuation effects, atmospheric effects, and others are not considered.

The model shown is a variation of an area or distributed lighting effect. It's primarily a diffuse effect, but

with a more interesting ambient term. It provides "shadow detail," and shows that an object is grounded

in a real-world scene by providing for an influence factor from the world itself. This is in essence an

image-based lighting technique.

Figure 10 is a Lightwave image showing a target scene for this model, where how close to the target the

model comes provides an evaluation of the model. Many ray-trace tools support a similar model, where

the renderer integrates at each point, casts rays from the microfacet pixel to all points of the hemisphere,

and accumulates color from ray intersections from other parts of the same object and the environment

map image. This can take hours. The goal here is to get a significant percent of the same quality in real-

time.

Figure 10. Target image for evaluating DIY model

The distributed lighting model used here, shown in Figure 11, works on large area light sources; there is

no single direction vector. Energy is based on a number of directions, the fraction of possible directions

that can illuminate the microfacet. When using this model for outdoor scenes, there are two light sources,

the sun and the sky. The sun is a directional light source, throwing sharp shadows. The sky is an omni-

directional light source, throwing soft shadows. It's useful to consider the area light source as an enclosing

5 - 36

hemisphere, and then the lighting of objects inside the scene reduces to considering what possible percent

of the hemisphere can shine on the object.

Figure 11. Distributed lighting model

Figures 12, 13, and 14 illustrate this for a cube, a hemisphere, and a sphere. It's pretty easy to see how

objects in scenes that use this model are lit. Figure 12 contains a cube, and the lighting intensity is

highest on the top face, and gradually decreases down the side faces. Figure 13 contains a hemisphere,

and the lighting intensity is greatest at the top polar region, decreasing down to the equator. Figure 14

contains a sphere, and lighting intensity is again greatest at the top polar region, and decreases towards

the bottom polar region.

5 - 37

Figure 12. "Hemisphere" lighting for a cube

Figure 13. "Hemisphere" lighting for a hemisphere

5 - 38

Figure 14. "Hemisphere" lighting for a sphere

Effectively, the light near the plane of the microfacet contributes less energy, so we can use the form

factor cos(q) term to scale energy down. Integrating L = 1/p S cos(q) dd for this models' irradiance term,

the light source is the far field. Integrating the environment map to get that term is the usual technique.

This will work even on DirectX 7-class hardware.

A cube map and its corresponding integral are shown in Figure 15. Notice that the environment map

integral is mostly two colors, sky color and ground color. The exact integral calculation is two slow for

interactive applications, indicating an authoring time process would be required, and that the integral

could not change during the game. That's less than ideal, but can anything be done about that?

Figure 15. Cubemap and its integral

5 - 39

Let's consider this 2-hemisphere model, where our current understanding of the model is as a calculation

with only two important terms�a sky term and a ground term. Figure 16 shows this 2-hemisphere model,

and Figure 17 contains a process block diagram.

Figure 16. 2-Hemisphere model

Figure 17. 2-Hemisphere model elements

The actual integral is:

5 - 40

color = a*Skycolor+(1-a)*GroundColor

Where

a = 1-0.5*sin(q) for q<90
a = 0.5*sin(q) for q > 90

Or, if instead of that, the simpler form

a = 0.5+0.5*cos(q)

is used. The resulting simplified integral versus the actual integral is shown in Figure 18. Notice the shape

of the curve is the same, but mirrored, and similar amounts of light and dark regions appear below both

curves. There is a general equivalency, even if it's not exact.

Figure 18. Integral comparison

Herein lies one of the secrets of the shader game: It's okay to substitute similar calculations if they are

generally equivalent, because at real-time frame rates the small delta in image quality is usually

unnoticeable. If this simplification provides enough of a performance gain, it can be preferred. In this

case, the simplification takes 2 clocks, since it uses a dp3 and mad. While it's not visually identical (this

solution provides more bump detail along the equator and less bump detail facing the light) it's good

enough to produce the desired effect at a significant gain in performance because, in this case, the actual

calculation was too slow to do in real-time versus this simplification with its 2-clock cost. That's a huge

win both in terms of clocks and in terms of grasping the essence and beauty of DIY lighting and the

shader calculation gestalt.

5 - 41

The 2-term calculation boils down to what percent of incident energy has what color. The far field

hemisphere is composed of 2 colors, sky, and ground, in a simple proportion. Even with the environment

simplified to two colors like this, the model still allows for dynamic updates, like when a car enters a

canyon or a tunnel, and then leaves it; so the pavement or ground color would change, or the sky or roof

color would change. The hemisphere implementation can also be done either per-vertex or per-pixel.

The per-vertex implementation can pass the hemisphere axis in as a light direction and use the standard

tangent space basis vertex shader that transforms the hemi axis into tangent space. A vertex shader

implementation would look something like:

vs.1.1 // vertex hemisphere shader

m4x4 oPos,v0,c8 // transform position

m3x3 r0, v3,c0 // transform normal

dp3 r0,r0,c40 // c40 is sky vector

mov r1,c33 // c33 is .5f in all channels

mad r0,r0,c33,r1 // bias operation

mov r1,c42 // c42 is ground color

sub r1,c41,r1 // c41 is sky color

mad r0,r1,r0,c42 // lerp operation

//c44 = (1,1,1,1)

sub r1,c44,v7.zzz // v7.zzz = occlusion term

mul r0,r0,r1

mul oD0,r0,c43

A per-pixel fragment implementation would look like:

// v0.rgb is hemi axis in tangent space

// v0.a is occlusion ratio from vshader

5 - 42

tex t0 // normal map

tex t1 // base texture

dp3_d2_sat r0,v0_bx2,t0_bx2 // dot normal with hemi axis

add r0,r0,c5 // map into range, not _sat

lrp r0,r0,c1,c2

mul r0,r0,t1 // modulate base texture

With that in mind, how does this look? Figure 19 shows the 2-term approach. While this is interesting,

there are issues here. The combination of two colors is getting there, but there is obviously too much light

in certain areas, like the eye sockets, the nostrils, and behind the teeth.

Figure 19. 2-term DIY image

5 - 43

Time to refine the DIY model. How is the model refined? With the addition of another term, of course.

What term would that be? Well, the first attempt did not take object self-shadowing into account, and that

is the basis of the resulting image being brighter in areas where it shouldn't be. So adding an occlusion

term is necessary.

Figure 20 shows a block diagram of this updated DIY lighting model. This calculation can be done vertex-

to-vertex by firing a hemisphere of rays from each normal, storing the result as vertex colors; or pixel-to-

pixel by firing rays in a height field and storing the result in the alpha channel of a normal map; or both by

firing rays from vertices and pixels and storing the result in a texture map.

Figure 20. Updated DIY model elements

The sample shown here used an offline rendering process to calculate this occlusion data. Considering the

vertex-to-vertex case, the calculation answers the question, "How much do adjacent polygons shadow

each other?" The result can be stored in a vertex attribute, and should handle object level effects. Note

that looking only at neighbor vertices might be okay.

Considering the pixel-to-pixel case, the calculation similarly answers the question, "How much do adjacent

pixels shadow each other?" An example is a bump-mapped earth, where the geometry provides no self-

occlusion, since a sphere is everywhere convex. This means all occlusion can be done in a bump map.

Figure 21 shows the resulting image with a 3-term DIY lighting model. This is a big improvement, with the

problem areas of the eye sockets, nostrils, and interior of the mouth looking much better.

5 - 44

Figure 21. 3-term DIY lighting model image

Finally, combine this with a directional light, as shown in Figure 22, and an amazingly realistic image

results for such a relatively simple lighting model.

5 - 45

Figure 22. 3-term DIY lighting model image

Now clearly, the process of defining, evaluating, and refining a DIY lighting model is iterative, but it isn't

all that difficult, as this article has shown. It's just a matter of clearly thinking through the process of what

sort of illumination is necessary to get the desired effect, and working through the iterations until it looks

good enough.

There are two lessons here: First, understanding the tangent space basis, so you can correctly perform

DOT3 based diffuse and specular lighting, and secondly, understanding how to perform "do-it-yourself"

lighting. Each of these lessons is important, and DIY lighting builds on the knowledge of and correct usage

of the tangent space basis, but the real kicker is understanding the "lighting black box" and functional

equivalencies, so that you feel comfortable using your own approaches to lighting when you want

something that appears just a little different.

Last Word

5 - 46

I'd like to acknowledge the help of Chas Boyd, Dan Baker, Tony Cox, and Mike Burrows (Microsoft) in

producing this column. Thanks to Lightwave for the Lightwave images, and Viewpoint Datalabs for the

models.

Your feedback is welcome. Feel free to drop me a line at the address below with your comments,

questions, topic ideas, or links to your own variations on topics the column covers. Please, though, don't

expect an individual reply or send me support questions.

Remember, Microsoft maintains active mailing lists as forums for like-minded developers to share

information:

DirectXAV for audio and video issues at http://DISCUSS.MICROSOFT.COM/archives/DIRECTXAV.html.

DirectXDev for graphics, networking, and input at

http://DISCUSS.MICROSOFT.COM/archives/DIRECTXDEV.html.

Philip Taylor is the PM for the DirectX SDK, Managed DirectX, the Windows® XP 3D screensavers, and a

few more bits and bobs. Previously at Microsoft he was senior engineer in the DirectX evangelism group

for DirectX 3.0 to DirectX 8.0, and helped many game ISVs with DirectX. He has worked with DirectX

since the first public beta of the GameSDK (DirectX 1.0), and, once upon a time, actually shipped DirectX

2.0 games. In his spare time, he can be found lurking on many 3-D graphics programming mailing lists

and Usenet newsgroups. You can reach him at msdn@microsoft.com.

5 - 47

5 - 48

Chapter 6

OpenGL 2.0
Randi Rost

SIGGRAPH 2002 6-1 State of the Art in Shading Hardware

COURSE 17: S TATE-OF-THE-ART IN SHADING HARDWARE1

CHAPTER 6: THE OPENGL SHADING LANGUAGE 2
Randi J. Rost

3Dlabs, Inc.

SIGGRAPH 2002 Course Notes

5-April-2002

Introduction

State of the Art in Shading Hardware 6-2 SIGGRAPH 2002

6.1 Introduction
or just about as long as there has been graphics hardware, there has been programmable graphics
hardware. Over the years, building flexibility into graphics hardware designs has been a necessary
way of life for hardware developers. Graphics APIs continue to evolve, and since a hardware design

can take two years or more from start to finish, the only way to guarantee a hardware product that can
support the then-current graphics APIs at its release is to build in some degree of programmability from the
very beginning.

Until recently, the realm of programming graphics hardware belonged to just a few people, mainly
researchers and graphics hardware driver developers. Research into programmable graphics hardware has
been taking place for many years, but the point of this research has not been to produce viable hardware and
software for application developers and end users. The graphics hardware driver developers have focused on
the immediate task of providing support for the important graphics APIs of the time: PHIGS, PEX, Iris GL,
OpenGL, Direct3D, and so on. Until recently, none of these APIs exposed the programmability of the
underlying hardware, so application developers have been forced into using the fixed functionality provided
by a traditional graphics APIs.

Hardware companies have not exposed the programmable underpinnings of their products because there is a
high cost of educating and supporting customers to use low-level, device-specific interfaces and because
these interfaces typically change quite radically with each new generation of graphics hardware. Application
developers who use such a device-specific interface to a piece of graphics hardware face the daunting task of
updating their software for each new generation of hardware that comes along. And forget about supporting
the application on hardware from multiple vendors!

As we move into the 21st century, some of these fundamental tenets about graphics hardware are being
challenged. Application developers are pushing the envelope as never before, and demanding a variety of
new features in hardware in order to create more and more sophisticated on-screen effects. As a result, new
graphics hardware designs are more programmable than ever before. Standard graphics APIs have been
challenged to keep up with the pace of hardware innovation. For OpenGL, the result has been a spate of
extensions to the core API as hardware vendors struggle to support a range of interesting new features that
their customers are demanding.

F

Introduction

SIGGRAPH 2002 6-3 State of the Art in Shading Hardware

So we are standing today at a crossroads for the graphics industry. A paradigm shift is occurring that is
taking us from the world of rigid, fixed-functionality graphics hardware and graphics APIs to a brave new
world where the visual processing unit, or VPU (i.e., graphics hardware) is as flexible and as important as
the central processing unit, or CPU. The VPU will be optimized for processing dynamic media such as 3D
graphics and video. Highly parallel processing of floating point data will be the primary task for VPUs, and
the flexibility of the VPU will mean that it can also be used to process data other than a stream of traditional
graphics commands. Applications can take advantage of the capabilities of both the CPU and the VPU,
utilizing the strengths of each to optimally perform the task at hand.

This paper talks about how we are attempting to expose the programmability of graphics hardware to the
leading cross-platform 3D graphics API: OpenGL. This effort is called OpenGL 2.0, and it brings a lot of
new and exciting features to OpenGL while retaining compatibility so that existing applications will
continue to run. For the purpose of this paper and this course, we will concentrate on presenting the OpenGL
Shading Language, a high-level shading language built into OpenGL that allows applications to take total
control over per-vertex and per-fragment calculations.

At the time of this writing, the features of OpenGL 2.0 are solidifying and implementation efforts are
beginning. It is not currently possible to execute all of the OpenGL 2.0 shaders described in this paper and
get screen shots of them, but they all have been compiled with our OpenGL Shading Language compiler. By
the time SIGGRAPH 2002 rolls around, we expect to be able to run all of these shaders and many more. You
are invited to check out the 3Dlabs web site at http://www.3dlabs.com and follow the link to our OpenGL
2.0 page. There you will find a version of this paper updated for SIGGRAPH, the latest versions of all of the
OpenGL 2.0 white papers, and information about obtaining and working with the 3Dlabs OpenGL 2.0
implementation.

Additions to OpenGL

State of the Art in Shading Hardware 6-4 SIGGRAPH 2002

6.2 Additions to OpenGL
The effort to define OpenGL began in the early 1990's and the first version of the OpenGL specification was
approved in 1992. Since that time, great strides have been made in both system architecture and graphics
hardware architecture. Today, graphics hardware is changing rapidly from the model of a fixed function
state machine (as originally targeted by OpenGL) to that of a highly flexible and programmable machine. It
is becoming much more difficult for hardware developers to support new features demanded by application
developers than to just expose the underlying programmability and let application developers do things
themselves.

The OpenGL Shading Language
The OpenGL 2.0 effort adds two programmable processors to the fixed geometry processing pipeline
previously defined by OpenGL. These two processors are called the vertex processor and the fragment
processor. The vertex processor is capable of executing a program called a vertex shader on each and every
vertex that is presented to it. The fragment processor is capable of executing a program called a fragment
shader on each and every fragment that results from primitive rasterization.

The high level language that is defined as part of the OpenGL 2.0 effort is called the OpenGL Shading
Language. Some of the significant features of this language are:

• It is integrated intimately with OpenGL 1.3
• It allows incremental replacement of the OpenGL 1.3 fixed functionality
• It is a high level language, accessible to all applications
• It is based on C and C++ and includes support for scalar, vector and matrix types
• It virtualizes most of the graphics hardware pipeline resources
• The same language is used for both vertex and fragment shaders
• OpenGL state is directly accessible from the language
• It has a rich feature set, including numerous built-in functions for common operations
• It is hardware independent and implementable on a variety of graphics hardware architectures
• It is (will be) a standard part of OpenGL

The OpenGL 2.0 environment
The diagram below is a simplified version of the logical diagram for OpenGL 2.0. It is based on the logical
diagram called The OpenGL Machine published with the OpenGL Reference Manual (blue book). It
illustrates some of the primary differences between OpenGL 2.0 and OpenGL 1.3. It should not be
interpreted as an implementation diagram, it is a logical diagram that illustrates the state blocks, processing
modules, and data paths in OpenGL 2.0.

The OpenGL 2.0 state machine is very similar to that of OpenGL 1.3, but several areas of fixed functionality
have been augmented by programmable processors. This diagram shows only the programmable units and
not the fixed functionality that they replace.

Additions to OpenGL

SIGGRAPH 2002 6-5 State of the Art in Shading Hardware

The newly defined programmable units are shown as blue (shaded) stars. State blocks that remain the same
as in OpenGL 1.3 are shown in white rectangles. To simplify the diagram, some of the OpenGL 1.3
functionality that remains the same in OpenGL 2.0 is grouped together in a single white rectangle (e.g., clip,
project, viewport, cull). Memory that is under control of the application is shown on the left, and memory
that is controlled by OpenGL is shown in orange (shaded) boxes. The arrows represent the primary flow of
data. For immediate mode geometry commands, vertex data starts out in application memory and is sent
down what is referred to as the geometry pipeline, generating pixels that are ultimately written into frame
buffer memory. The application sends pixel data to the unpack processor and after rasterization, it is written
to either the frame buffer or texture memory. The fragment processor can read texture memory during
subsequent rendering operations. The application can read back pixels from the frame buffer, optionally
passing them through the fragment processor for processing, and then packing them in application memory
under the control of the pack processor.

Vertex Processor
The vertex processor is a programmable unit that processes vertex data in the OpenGL pipeline. When the
vertex processor is active, the following fixed functionality of OpenGL is disabled:

• Vertex transformation
• Normal transformation and normalization
• Texture coordinate generation
• Texture coordinate transformation
• Lighting
• Color material application
• Clamping of colors

App.
Memory

Vertex
 Processor

 Rasterize

 Rasterize

Fragment
Processor

Per
Fragment

Operations

Frame
Buffer

Operations

Texture
Memory

Frame
Buffer

Pack
 Processor

Read
Control

Unpack
 Processor

= Programmable Processor Pixel Groups
Vertices
Fragments
Textures

Primitive
Assembly

Clip
Project

Viewport
Cull

(Geometry)

(Pixels)

Additions to OpenGL

State of the Art in Shading Hardware 6-6 SIGGRAPH 2002

Even when the vertex processor is active, the following OpenGL functions are still performed by the fixed
functionality within OpenGL. Most of these operations work on several vertices at a time and involve
topological knowledge:

• Perspective divide and viewport mapping
• Primitive assembly
• Frustum and user clipping
• Backface culling
• Two-sided lighting selection
• Polymode processing
• Polygon offset

Vertex shaders that intend to perform computations similar to the fixed functionality of OpenGL 1.3 are
responsible for writing the code for all of the functionality in the first list above. For instance, it is not
possible to use the existing fixed functionality to perform the vertex and normal transformation but have a
specialized lighting function. The shader must be written to perform all three functions. Existing OpenGL
state is available to a vertex shader in the form of predefined variables (e.g., gl_ModelViewMatrix). Any
OpenGL state used by the shader is automatically tracked and made available to the shader. This automatic
state tracking mechanism allows applications to use existing OpenGL state commands for state management
and have the current values of such state automatically available for use in the vertex shader.

The vertex processor operates on one vertex at a time. This programmable unit does not have the capability
of reading from texture memory or the frame buffer. The design of this unit is focused on the functionality
needed to transform and light a single vertex. The vertex shader must compute the homogeneous position of
the coordinate, and it may also compute color, texture coordinates, and other arbitrary values to be passed to
the fragment processor. The output of the vertex processor is sent through subsequent stages of processing
that are defined exactly the same as they are for OpenGL 1.3: primitive assembly, user clipping, frustum
clipping, perspective projection, viewport mapping, polygon offset, polygon mode, shade mode, and culling.

After all this processing, vertex data arrives at the rasterization stage. OpenGL defines rasterization as
consisting of two parts. The first part of rasterization is to determine which squares of an integer grid in
window coordinates the primitive occupies. This portion of the rasterization process remains unchanged for
OpenGL 2.0. The second part of rasterization, assigning color, depth, and stencil values to each square, is
almost completely replaced in OpenGL 2.0 as described in the next section.

Fragment Processor
The fragment processor (defined in the OpenGL 2.0 Shading Language white paper) is designed to operate
on the fragments produced by the rasterization stage. In OpenGL, a fragment is defined as a grid square (i.e.,
an x/y position) and its assigned color, depth, and texture coordinates. In OpenGL 1.3, there are very strict
rules for how the fragment's associated data can be modified. Additional rules have been added through
extensions, exposing the greater flexibility of current hardware. In OpenGL 2.0, a programmable unit (the
fragment processor) is defined to allow applications to use a high-level programming language to express
how the fragment's associated data is computed. Mechanisms for creating, compiling, linking, using, and
deleting programs for this processor are the same as for the vertex processor.

Additions to OpenGL

SIGGRAPH 2002 6-7 State of the Art in Shading Hardware

When the fragment processor is active, the following fixed functionality relating to geometry processing is
replaced:

• Interpolation of vertex data across the primitive
• Texture access
• Texture application
• Fog
• Color sum

and the following fixed functionality relating to pixel processing is also replaced:

• Pixel zoom
• Scale and bias
• Color table lookup
• Convolution
• Color matrix

Even when the fragment processor is active, the following OpenGL functions are still performed by the
fixed functionality within OpenGL:

• Shading model
• Coverage
• Pixel ownership test
• Scissor
• Stipple
• Alpha test
• Depth test
• Stencil test
• Alpha blending
• Logical ops
• Dithering
• Plane masking
• Pixel packing/unpacking

Related OpenGL state is also automatically tracked if used by the fragment shader. With the exception of a
few built-in functions, the language used to program the fragment processor is nearly identical to the
language used to program the vertex processor. A fragment shader can change a fragment's depth, color, and
stencil value, but not its x/y position. To support parallelism at the fragment processing level, fragment
shaders are written in a way that expresses the computation required for a single fragment, and access to
neighboring fragments is not allowed. A fragment shader is free to read multiple values from a single
texture, or multiple values from multiple textures. It is not allowed to directly write either texture memory or
frame buffer memory, but it can directly read frame buffer memory at the current pixel location.

The OpenGL 1.3 parameters for texture maps are carried forward to OpenGL 2.0 and continue to define the
behavior of the filtering operation, borders, and wrapping. These operations are applied when a texture is
accessed. The fragment shader is free to use the resulting texel however it chooses. It is possible for a
fragment shader to read multiple values from a texture and perform a custom filtering operation. It is also

Additions to OpenGL

State of the Art in Shading Hardware 6-8 SIGGRAPH 2002

possible to use a 1D texture to perform a lookup table operation. In both cases the texture should have its
texture parameters set so that nearest neighbor filtering is applied on the texture access operations.

For each fragment, the fragment shader can compute color, depth, stencil, or one or more arbitrary data
values. A fragment shader must compute at least one of these values. The color, depth, and stencil values
will remain as computed by the previous stages in the OpenGL pipeline if the fragment shader does not
modify them.

The results of the fragment shader are then sent on for further processing. The remainder of the OpenGL
pipeline remains as defined in OpenGL 1.3. Fragments are submitted to coverage application, pixel
ownership testing, scissor testing, alpha testing, stencil testing, depth testing, blending, dithering, logical
operations, and masking before ultimately being written into the frame buffer..

Creating and compiling shaders
A shader is created using:

GLhandle glCreateShaderObject (GLenum shaderType)

The shader object is empty when it is created. The shaderType argument specifies the type of shader object
to be created, and should be one of GL_VERTEX_SHADER or GL_FRAGMENT_SHADER. If the shader
object is created successfully, a non-zero handle that can be used to reference it is returned.

Source code for the shader is specified with the commands:

void glLoadShader (GLhandle shaderID,
 const GLuint nseg,
 const GLubyte **seg)

void glAppendShader (GLhandle shaderID, const GLubyte *seg)

The glLoadShader command sets the source code for the specified shader object to the text strings in the seg
array. If the object previously had source code loaded into it, it is completely replaced. The glAppendShader
command adds the specified string onto the end of the existing source code for the shader. The shaderID
argument selects the shader to be modified. The seg argument is an array of pointers to one or more null
terminated character strings that make up the program. The number of strings in the array is given in nseg.
The multiple strings interface provides:

• A way to organize common pieces of source code.
• A way to share prefix strings (analogous to header files) between programs as an aid to compatibility

between the output of the vertex shader to the input of a fragment shader.
• A way of supplying external #define values to control the compilation process.
• A way for including user defined or third party library functions.
• Allows for each string to be treated as a compilation unit so functions can be made private, hence may

provide better support for 'programming in the large' or libraries.

A shader is compiled with the command:

GLboolean glCompileShader (GLhandle shaderID)

Additions to OpenGL

SIGGRAPH 2002 6-9 State of the Art in Shading Hardware

This function returns TRUE if the shader was compiled without errors and is ready for use, and FALSE
otherwise. A read-only string containing information about the compilation can be obtained with the
command:

const GLubyte *glGetInfoLog (shaderID)

If a shader compiled successfully the info log will either be an empty string or it will contain information
about the compilation. The info log is only useful during application development and an application should
not expect different OpenGL implementations to produce identical descriptions of error.

Once a shader object is no longer needed, it can be deleted using one of the object deletion commands:

void glDeleteObject (GLhandle objectID)
void glDeleteObjects (GLuint numObjs, GLhandle *objectIDs)

Linking and using shaders
In order to use shaders, they must be attached to a program object and linked. A program object is created
with the command:

GLhandle glCreateProgramObject ()

The program object is empty when it is created. If the program object is created successfully, a non-zero
handle that can be used to reference it is returned. Program objects can be deleted just like shader object with
the glDeleteObject and glDeleteObjects calls.

Shader objects are attached to a program object with the command:

GLboolean glAttachShaderObject (GLhandle programID, GLhandle shaderID)

This function returns TRUE if programID represents a valid program object and shaderID represents a valid
shader object and the attach operation is successful, and FALSE otherwise. It is permissible to attach shader
objects to program objects before source code has been loaded into the shader object, or before the shader
object has been compiled. It is permissible to attach multiple shader objects of the same type to a single
program object, and it is permissible to attach a shader object to more than one program object. The generic
detach object function is used to detach a shader object from a program object.

void glDetachObject (GLhandle programID, GLhandle shaderID)

In order to use the shaders contained in a program object, the program object must be linked and the
program object must be made part of the current rendering state. This is accomplished with the following
commands:

GLboolean glLinkProgram (GLhandle programID)
GLboolean glUseProgramObject (GLhandle programID)

The link command attempts to create a valid executable program for the programmable environment of
OpenGL 2.0, and it returns TRUE if successful, FALSE otherwise. Information about the link operation can
be obtained by calling glGetInfoLog with the ID of the program object. If the program object was linked
successfully the info log will either be an empty string or it will contain information about the link operation.

Additions to OpenGL

State of the Art in Shading Hardware 6-10 SIGGRAPH 2002

If a valid executable is created, the program object can be made part of the current rendering state by calling
glUseProgramObject.

The link command attempts to create a valid program for each of the programmable processors in OpenGL
2.0 from the attached shaders. All of the attached shader objects of a particular type are linked together to
form the executable program for the corresponding OpenGL 2.0 processor. For instance, all of the shader
objects of type GL_VERTEX_SHADER are linked together to form a single executable for the vertex
processor. If the program object does not contain any shader objects of a particular type, the processor
corresponding to that shader type will be inactive and the corresponding fixed functionality of OpenGL will
be used instead. (For instance, if a shader of type GL_VERTEX_SHADER is provided, but no shader of
type GL_FRAGMENT_SHADER is provided, the vertex processor will be active but the fragment
processor will not. Fixed functionality will be used to process fragments in this case.)

If the link operation is successful, the program object contains executable code that is made part of the
rendering state when glUseProgramObject is called. glUseProgramObject will install the executable code as
part of current rendering state and return TRUE if the specified program object contains valid executable
code. It will return FALSE and leave the current rendering state unmodified if the specified program object
does not contain valid executable code. If glUseProgramObject is called with a handle of 0, all of the
OpenGL 2.0 processors are disabled and the OpenGL 1.3 fixed functionality will be used instead.

The program object that is currently in use can be obtained by calling glGetHandle with the parameter name
GL_PROGRAM_OBJECT. While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects, and detach shader objects.

Specifying vertex attributes
Vertex data is passed to OpenGL in the same way as always. One way vertex data is passed to OpenGL is by
calling glBegin, followed by some sequence of glColor/glNormal/glVertex/etc. A call to glEnd terminates
this method of specifying vertex data.

These calls continue to work in the OpenGL 2.0 environment. As before, a call to glVertex indicates that the
data for an individual vertex is complete and should be processed. However, if a valid vertex shader has
been installed by calling glUseProgramObject, the vertex data will be processed by that vertex shader
instead of by the usual fixed functionality of OpenGL. A vertex shader can access the standard types of
vertex data passed to OpenGL using the following built-in variables:

attribute vec4gl_Vertex;
attribute vec4gl_Color;
attribute vec3gl_Normal;
attribute vec4gl_MultiTexCoord0;// glTexCoord also updates this.
attribute vec4gl_MultiTexCoord1;
attribute vec4gl_MultiTexCoord2;
attribute vec4gl_MultiTexCoord3;
attribute vec4gl_MultiTexCoord4;
attribute vec4gl_MultiTexCoord5;
attribute vec4gl_MultiTexCoord6;
attribute vec4gl_MultiTexCoord7;
attribute vec4gl_SecColor;
attribute vec3gl_FrontMaterial[5];
attribute vec3gl_BackMaterial[5];

Additions to OpenGL

SIGGRAPH 2002 6-11 State of the Art in Shading Hardware

OpenGL’s vertex-at-a-time interface is simple and powerful, but on today’s systems it is definitely not the
highest performance way of rendering. Whenever possible, applications should use the vertex array interface
instead. This interface allows you to store vertex data in arrays and set pointers to those arrays. Instead of
drawing a vertex at a time, you can draw a whole set of primitives at a time. It is even possible that vertex
arrays are stored in graphics memory to allow for maximum performance (see the OpenGL 2.0 white paper
Minimizing Data Movement and Memory Management).

The vertex array interface also works the same way in OpenGL 2.0 as it did previously. When a vertex array
is rendered, the vertex data is processed one vertex at a time, just like the vertex-at-a-time interface. If a
vertex shader is active, each vertex will be processed by the vertex shader rather than by the fixed
functionality of OpenGL.

However, the brave new world of programmability means that applications no longer need to be limited to
the 22 standard attributes defined by OpenGL. There are many additional per-vertex attributes that
applications would like to pass into a vertex shader. It is easy to imagine that applications will want to
specify per-vertex data such as tangents, temperature, pressure, and who knows what else. How do we allow
applications to pass “non-traditional” attributes to OpenGL and operate on them in vertex shaders?

Then answer is to imagine that the hardware has a small number of generic locations for passing in vertex
attributes. Each location is numbered. An implementation that supports 16 attribute locations will have them
numbered from 0 to 15. An application can pass a vertex attribute into any of the numbered slots using one
of the following functions:

void glVertexAttribute{1234}{sfd} (GLuint location, T value)
void glVertexAttribute{1234}{sfd}v (GLuint location, T *value)
void glVertexAttribute4ub (GLuint index, T values)
void glVertexAttribute4ubv (GLuint index, T *values)

which load the given value(s) into the attribute indicated by location. The attributes follow the OpenGL
rules for the substitution of default values for missing components. Signed integers are converted into the
range -1.0… 1.0 and unsigned integers are converted into the range 0.0… 1.0. The above notation is a
shorthand way of expressing a number of different entry points. The {1234} notation indicates that there is a
separate version of the function for expressing data with 1, 2, 3, or 4 components. The {sfd} notation
indicates that there is a separate version of the function for expressing data as a short, a float, or a double.
The T indicates the data type for the data to be based and it corresponds to the selection of short, float, or
double in the {sfd} notation. The v indicates that the function is a pointer to a “vector” (array) of data. So for
example, the actual function that you would use to supply a three-component float as a vector would be
defined as:

void glVertexAttribute3fv(GLuint location, GLfloat *value)

This solves the question of how user-defined vertex data is passed into OpenGL, but how do we access that
data from within a vertex shader? We don’t want to refer to these numbered locations in our shader since this
is not very descriptive and is prone to errors. Instead, we bind a numbered location to a variable name that
we will use in our vertex shader by using the following function:

void glBindAttributeLocation (GLhandle program,
 GLuint location,

Additions to OpenGL

State of the Art in Shading Hardware 6-12 SIGGRAPH 2002

 const ubyte *name)

Using these functions, we can create a vertex shader that contains a variable named “temperature” that is
used directly in the lighting calculations. We can decide that we want to pass per-vertex temperature values
in attribute location 11, and set up the proper binding with the following line of code:

temperatureLoc = 11;
glBindAttributeLocation(myProgram, temperatureLoc, “temperature”);

Subsequently, we can call glVertexAttribute to pass a temperature value at every vertex in the following
manner:

glVertexAttribute1f(temperatureLoc, temperature);

It is also possible to pass several values simultaneously using these new functions:

void glVertexAttributes{1234}{sfd}v (GLuint location,
 GLuint count,
 T *values)

void glVertexAttributes4ubv (uint location,
uint count,
T *values)

The glVertexAttribute* calls are all designed for use between glBegin and glEnd. As such, they offer
replacements for the standard OpenGL calls such as glColor, glNormal, etc. But as we have already pointed
out, this is not the best way to do things if graphics performance is a concern.

The vertex array interface has also been extended to include the notion of user-defined data. New array types
GL_USER_ATTRIBUTE_ARRAY0 through GL_USER_ATTRIBUTE_ARRAYn-1 are defined, where n
is the number of attribute locations supported by the implementation. These arrays can be used to pass user-
defined data to the vertex array interface. In our example, the temperature values could be stored in the
GL_USER_ATTRIBUTE_ARRAY11 array, and passed to OpenGL by calling glDrawArray. The
glBindAttributeLocation function defined above would be used in the same way to bind vertex attribute
location 11 to the variable named “temperature” in our vertex shader.

Specifying other attributes
As described in the previous section, attribute variables are used to provide per-vertex data to the shader.
Data that is constant across the primitive being rendering can be specified by using uniform variables.
Uniform variables declared within a shader can be loaded directly by the application. This gives applications
the ability to provide any type of arbitrary data to a shader. Applications can modify these values as often as
every primitive in order to modify the behavior of the shader (although performance may suffer if this is
done).

The OpenGL Shading Language also defines a number of built-in variables that track OpenGL state.
Applications can continue using OpenGL to manage state through existing OpenGL calls, and use these
built-in uniform variables in custom shaders. Of course, if you want something that isn’t already supported

Additions to OpenGL

SIGGRAPH 2002 6-13 State of the Art in Shading Hardware

directly by OpenGL, it is a simple matter to define your own uniform variable and supply the value to your
shader.

When a program object is made current, user-defined uniform variables have undefined values, and built-in
uniform variables that track GL state are initialized to the current value of that GL state. Subsequent calls
that modify a GL state value will cause the built-in uniform variable that tracks that state value to be updated
as well. The following commands are used to load uniform parameters into the program object that is
currently in use.

void glLoadUniform{1234}f (GLint uniformLoc, T value)
void glLoadUniform{1234}fv (GLint uniformLoc, T value)
void glLoadUniformInt(GLint uniformLoc, int value)
void glLoadUniformBool(GLint uniformLoc, int value)
void glLoadUniformArray{1234}fv (GLint uniformLoc,

GLint start, GLuint count, T value)
void glLoadUniformMatrix{234}fv (GLint uniformLoc, T value)
void glLoadUniformMatrixArray{234}fv (GLint uniformLoc, GLint start,

 GLuint count, T value)

Application code for creating/compiling shaders
Now that we’ve covered the basics, let’s look at some sample application code that will set things up for
rendering with a custom vertex shader and a custom fragment shader. It is convenient to store OpenGL
shaders in their own files for easier maintenance. The first thing we’ll do is call a function to read each
shader from a file and store it as a string:

//
// Read the source code
//
if (!readShader(fileName, EVertexShader, vertexShaderString, vSize))

return 0;

if (!readShader(fileName, EFragmentShader, fragmentShaderString, fSize))
return 0;

This results in a string called vertexShaderString containing our entire vertex shader, and a string called
fragmentShaderString containing our entire fragment shader. Next, we need to create three OpenGL objects:
a shader object that will be used to store and compile our vertex shader, a second shader object that will be
used to store and compile our fragment shader, and a program object to which our shaders will be attached.

//
// Create shader and program objects. Note, you should
// really check if the handles returned are not null.
//
programObject = glCreateProgramObject();
vertexShaderObject = glCreateShaderObject(GL_VERTEX_SHADER);
fragmentShaderObject = glCreateShaderObject(GL_FRAGMENT_SHADER);

The strings that hold our two shaders can now be passed on to our two newly-created shader objects. There
are two functions for doing this, and either one can be used.

Additions to OpenGL

State of the Art in Shading Hardware 6-14 SIGGRAPH 2002

//
// Hand the source to OpenGL. Use either load or append,
// it doesn't matter.
//
glLoadShader(vertexShaderObject, 1, &vertexShaderString);
glAppendShader(fragmentShaderObject, fragmentShaderString);

The shaders are ready to be compiled. For each shader, we call glCompileShader and then call glGetInfoLog
in order to see what transpired. glCompileShader will return TRUE if it succeeded and FALSE otherwise.
Regardless of whether the compilation suceeded or failed, we print out what was contained in the info log
for the shader. If the compilation was unsuccessful, this log will have information about the compilation
errors. If the compilation was successful, this log may still have useful information that would help us
improve the shader in some way. You would typically only check the info log during application
development, or if you’re running a shader for the first time on a new platform. We’re going to bail out if the
compilation of either shader failed.

//
// Compile the vertex and fragment shader, and print out
// the compiler log file.
//
compiled = glCompileShader(vertexShaderObject);
pInfoLog = glGetInfoLog(vertexShaderObject);
printf("%s\n\n", pInfoLog);

compiled &= glCompileShader(fragmentShaderObject);
pInfoLog = glGetInfoLog(fragmentShaderObject);
printf("%s\n\n", pInfoLog);

if (!compiled)
return 0;

At this point the shaders have been compiled successfully, and we’re almost ready to try them out. The
shader objects are attached to our program object so that they can be linked.

//
// Populate the program object with the two compiled shaders
//
glAttachShaderObject(programObject, vertexShaderObject);
glAttachShaderObject(programObject, fragmentShaderObject);

Our two shaders are linked together to form an executable by calling glLinkProgram. Again, we look at the
info log of the program object regardless of whether the link succeeded or failed. There may be useful
information for us if we’ve never tried this shader before. If we make it to the end of this code, we have a
valid program object that can be made part of current state simply by calling glUseProgramObject.

//
// Link the whole thing together and print out the linker log file
//
linked = glLinkProgram(programObject);
pInfoLog = glGetInfoLog(programObject);
printf("%s\n\n", pInfoLog);

Additions to OpenGL

SIGGRAPH 2002 6-15 State of the Art in Shading Hardware

if (compiled && linked)
return programObject;

else
return 0;

Application code for installing and using a shader
Each shader is going to be a little bit different. Each vertex shader may use a different set of attributes,
different uniforms, attributes may be bound to different locations, etc. In our demo program, we just have an
“install” function for each set of shaders that we want to install and use. The following example code is used
to make the wood shader from section 6.7 part of current state. In this case, “installing” consists of calling
glUseProgramObject on the program object that was previously created to contain the wood shader and then
loading the uniform variables with the values that will be used for this execution of the wood shader.

GLhandle installWoodShader()
{
//
// Creates some 3D wood grain with diffuse lighting
//
GLhandle woodProgramObject;

woodProgramObject = installShader("wood");

glUseProgramObject(woodProgramObject);
{

float colorSpread[3] = { 0.3, 0.15, 0.0 };
float lightPosition[3] = { 0.0, 0.0, 4.0 };
float darkColor[3] = { 0.6, 0.3, 0.1};
float ringSize = 1.0;
float scale = 2.0;

glLoadUniform1fv(glGetUniformLocation(woodProgramObject,
"RingSize"), &ringSize);

glLoadUniform1fv(glGetUniformLocation(woodProgramObject,
"Scale"), &scale);

glLoadUniform3fv(glGetUniformLocation(woodProgramObject,
"LightPosition"), &lightPosition[0]);

glLoadUniform3fv(glGetUniformLocation(woodProgramObject,
"DarkColor"), &darkColor[0]);

glLoadUniform3fv(glGetUniformLocation(woodProgramObject,
"ColorSpread"),&colorSpread[0]);

}

return woodProgramObject;

}

Overview of the OpenGL Shading Language

State of the Art in Shading Hardware 6-16 SIGGRAPH 2002

6.3 Overview of the OpenGL Shading Language
We’ve talked all about how to create, load, compile, link, use, and get data into an OpenGL shader. But we
haven’t yet talked about the programming language for writing those shaders. For the rest of this paper,
we’ll be looking at example shaders and seeing how things work in the OpenGL 2.0 environment.

The OpenGL Shading Language has its roots in C and has features similar to RenderMan and other shading
languages. It has a rich set of types, including vectors and matrices. An extensive set of built-in functions
operates just as easily on vectors as on scalars. The language includes support for loops, subroutine calls,
and conditional expressions. It is assumed that hardware vendors will be able to use compiler technology to
translate this high level language into machine code that will execute to within a few percent of the
performance of hand-written machine code.

A thorough description of the OpenGL Shading Language can be found in the white paper OpenGL 2.0
Shading Language, available at the 3Dlabs web site (http://www.3dlabs.com). In this paper, we focus more
on programming examples, but here is a brief summary of this language.

• The language is high level and the same language is used for both vertex and fragment shaders.
• It is based on C and C++ and uses many of the same syntax and semantic rules.
• It naturally supports vector operations as these are inherent to many graphics algorithms.
• There are no obvious limits on a shader's size or complexity.

Data types
The OpenGL Shading Language supports the following data types:

These data types are modeled after the data types in the C programming language. Unlike C, there are no
user defined structures or pointers.

Constructors
The constructor syntax from C++ is used to make variables of the correct type before assignment or during
an expression. A constructed value is created by setting its components to a sequence of comma-separated
values enclosed in parentheses. Data type conversion is performed as necessary. If there is a single value
within parentheses, this single value is used to initialize the constructed value. If there are multiple values,
they will be assigned in order, from left to right, to the components of the constructed value. Once a
constructed item has values assigned to each of its components, any extra values in the list will be ignored.

All the variable types can have one (and only one) qualifier before the type keyword. If no qualifier is
present then the variable is just like any variable defined in C and can be read and written as expected.

bool a conditional type, taking on values of true or false
int a 16-bit signed integer
float a single floating point scalar
vec2 a two component floating point vector
vec3 a three component floating point vector
vec4 a four component floating point vector
mat2 a 2x2 floating point matrix
mat3 a 3x3 floating point matrix
mat4 a 4x4 floating point matrix

Overview of the OpenGL Shading Language

SIGGRAPH 2002 6-17 State of the Art in Shading Hardware

Type qualifiers
Named constants can be declared using the const qualifier. Any variables qualified with the keyword const
are read-only variables for that shader. Declaring variables as constant allows more descriptive shaders than
using hard-wired numerical constants. The const qualifier can be used with any of the fundamental data
types. It is an error to write to a const variable outside of the declaration and they must be initialized as part
of the declaration. An example is:

const vec3zAxis = vec3 (0, 0, 1);

The keyword attribute is used to qualify variables that are passed to a vertex shader from OpenGL on a per-
vertex basis. It is an error to declare an attribute variable in any type of shader other than a vertex shader.
Attribute variables are read-only as far as the vertex shader is concerned. Values for attribute variables are
passed to a vertex shader through the OpenGL vertex API or as part of a vertex array. They convey vertex
attributes to the vertex shader and are expected to change on every vertex shader run. The attribute qualifier
can be used only with the data types float, vec2, vec3, vec4, mat2, mat3, and mat4.

A declaration looks like:

attribute vec4position;
attribute vec3normal;
attribute vec2texCoord;

All the standard OpenGL vertex attributes have built-in variable names to allow easy integration between
user programs and OpenGL vertex functions. The built-in attribute names are listed later in this section.

It is expected that graphics hardware will have a small number of fixed locations for passing vertex
attributes. Therefore, the OpenGL Shading language defines each attribute variable as having space for up to
four floating-point values (i.e., a vec4). There is an implementation dependent limit on the number of
attribute variables that can be used and if this is exceeded it will cause a link error. (Declared attribute
variables that are not used do not count against this limit.) A float attribute counts the same amount against
this limit as a vec4, so applications may want to consider packing groups of four unrelated float attributes
together into a vec4 to better utilize the capabilities of the underlying hardware. A mat4 attribute will use up
the equivalent of 4 vec4 attribute variable locations, a mat3 will use up the equivalent of 3 attribute variable
locations, and a mat2 will use up 1 attribute variable location

The keyword uniform is used to qualify variables that remain constant for the entire primitive being
processed. Typically, variables qualified as being uniform will be constant over a number of
primitives/vertices/fragments. Uniform variables are read-only as far as the shader is concerned and are
initialized directly by an application via API commands, or indirectly because of state tracking. The uniform
qualifier can be used with any of the fundamental data types.

An example declaration is:

uniform vec4lightPosition;

There is an implementation dependent limit on the amount of uniform storage that can be used for each type
of shader and if this is exceeded will cause a compile time error. (Uniform variables that are declared but not
used do not count against this limit.) The number of user-defined uniform variables and the number of built-
in uniform variables that are used within a shader are added together to determine whether available uniform

Overview of the OpenGL Shading Language

State of the Art in Shading Hardware 6-18 SIGGRAPH 2002

storage has been exceeded. If two shaders that are linked together refer to a uniform variable of the same
name, they will read the same value.

Varying variables provide the interface between a vertex shader and a fragment shader. These variable are
write-only for the vertex shader and read-only for the fragment shader. You can think of these variables as
allocating the hardware interpolators that will be used when rendering a primitive. At link time, the varying
variables actually used in the vertex shader are compared to the varying variables actually used in the
fragment shader. If the two do not match, a link error will result. The built-in varying variable gl_Position
holds the homogeneous vertex position and must be written to by the vertex shader otherwise a compiler
error will be generated.

An example declaration looks like:

varying vec3 normal;

Attribute variables, uniform variables, and varying variables all share the same name space so they must
have unique names. To avoid namespace confusion within a shader, all attribute, uniform, and varying
variables must be declared at a global scope (outside any functions).

Vector components
The names of the components of a vector are denoted by a single letter. As a notational convenience, several
letters are associated with each component based on common usage of position, color or texture coordinate
vectors. A generic vector component notation is also provided. The individual components of a vector can
be selected by following the variable name with a '.' and the component name.

The component names supported are:

The component names x, r, s and 0 are, for example, synonyms for the same (first) component in a vector.

Matrix Components
The individual components of a matrix can be accessed by following the variable with a '.' and the
component two digit row column number: 00, 01, 02, 03, 10, … , 33. 00 is the top left corner of the matrix.
The first digit represents the row to be accessed, and the second digit represents the column to be accessed.
Attempting to access a component outside the bounds of a matrix (e.g., component 33 of a mat3) will
generate a compiler error. An entire row or column of a matrix can be accessed by using the “_” in place of
a specific row or column number. Thus, ._0 will access column 0 and .0_ will access row 0, etc.

mat3 m;
m.00 = 1;// set the first element to 1.
m.0_ = vec3 (1, 2, 3);// sets the first row to 1, 2, 3

{x, y, z, w} useful when accessing vectors that represent points or normals
{r, g, b, a} useful when accessing vectors that represent colors
{s, t, p, q} useful when accessing vectors that represent texture coordinates
{0, 1, 2, 3} useful when accessing vectors that contain generic or unnamed values

Overview of the OpenGL Shading Language

SIGGRAPH 2002 6-19 State of the Art in Shading Hardware

Arrays
Uniform or varying variables can be aggregated into arrays (normal read/write variables cannot to
discourage overuse of temporary storage and because it is difficult for a compiler in determine register
reuse) using the C [] operator. The size must be specified. Some examples are:

uniform vec4lightPosition[4];
varying vec3material[8];

There is no mechanism (or need) to be able to initialize these arrays in the shaders as the initialization is
done by API commands.

Array elements are accessed as in C:

diffuseColor += lightIntensity[3] * NdotL;

The array index starts from zero and the index is an integer constant or an integer variable. An array can be
passed by reference to a function by just using the array name without any index.

Basic language constructs
White space and indenting are only mandatory to the extent that they separate tokens in the language,
otherwise they are ignored.

Comments may be denoted using either the C /* */ syntax or the C++ // comment syntax.

Expressions in the shading language include the following:

• constants: floating point (e.g. 2.0, 3, -3.24, 3.6e6) and named constants (from the const declaration).
• vector and matrix constructors, for example vec3 (0, 1, 0).
• variable references, array subscripting, and vector/matrix component selection.
• the binary operators +, -, *, /, and %.
• the unary - (negation) operator, as well as pre- and post- increment and decrement (--) and (++).
• the relational operators (>, >=, <, <=), the equality operators (==, !=) and logical operators (&&, || and

!). All these operations result as bool. Logical operators operate on type bool and auto-convert their
operands to be bool.

• the comma operator (,) as in C
• built in-function calls
• user defined function calls

Operator precedence rules are as in C and parentheses can be used to change precedence.

Assignments are made using '=' as in C and the variable must be of the same type as finally produced by the
expression, i.e. no implied casting is done. However, an int will be automatically promoted to a float.
Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.
The +=, -=, *=, /=, and %= assignment operators in C are also supported.

Control Flow
The fundamental control flow features of the OpenGL Shading Language are:

• block structured statement grouping

Overview of the OpenGL Shading Language

State of the Art in Shading Hardware 6-20 SIGGRAPH 2002

• conditionals
• looping constructs
• function calls

These constructs are all modeled on their counterparts in the C programming language.

A statement is an expression or declaration terminated by a semicolon.

Braces are used to group declarations and statements together into a compound statement or block so that
they are syntactically equivalent to a single statement. Any variables declared within a brace-delimited
group of statements are only visible within that block. In other words, the variable scoping rules are the same
as in C.

The conditional expression is supported and is written using the ternary operator "?:". In the expression:

expression ? true-expression : false-expression

expression is evaluated first. If it is true or non-zero then true-expression is evaluated and that is the value
of the conditional expression. Otherwise, false-expression is evaluated and that is the value. Constructors
should be used to obtain compatible types. If the types of true-expression and false-expression differ, a
compiler error will be generated.

Conditionals in the shading language are the same as in C:

if (expression)
true-statement

or

if (expression)
true-statement

else
false-statement

The expression is evaluated, and if it is true (that is, if expression is true or a non-zero value), true-statement
is executed. If it is false (expression is false or zero) and there is an else part then false-statement is executed
instead.

The relational operators ==, !=, <, <=, > and >= may be used in the expression and be combined using the
logical operators &&, || and !. If the conditional is operating on a vector or a matrix then all the components
of the vector or matrix must be true for true-statement to be executed.

Conditionals can be nested.

For, while, and do loops are allowed as in C:

for (init-expression; condition-expression; loop-expression)
statement;

while (condition-expression)
statement;

do

Overview of the OpenGL Shading Language

SIGGRAPH 2002 6-21 State of the Art in Shading Hardware

statement;
while (condition-expression)

Constructs for early loop termination are also the same as in C:

break;
continue;

Integer and boolean expressions are preferred for condition-expression, as this will ensure all the vertices or
fragments in a primitive have the same execution path whereas with a float as a control variable this cannot
be guaranteed.

The break statement can be used to break out of the loop early. In the for loop, the continue statement can be
used to skip the remainder of the statement and execute loop-expression and condition-expression again.

Loops can be nested.

A valid shader contains exactly one function named main. This function takes no arguments and returns no
value. Therefore, the skeleton of all valid shaders will look like this:

void main(void)
{
...
}

User defined functions
Shaders can be partitioned into functions as an aid to writing clearer programs and reusing common
operations. An implementation can inline the calls or do true subroutines. Recursion is not allowed.

A function is defined similar to C:

// prototype
returnType functionName (type0 arg0, type1 arg1, …, typen argn);

// definition
returnType functionName (type0 arg0, type1 arg1, …, typen argn)
{
// do some computation
return returnValue;
}

All functions must be defined before they are called or have prototypes.

Arguments are always passed by reference and are read-only unless the output keyword is used to qualify an
argument. For example:

float myfunc (float f,// you cannot assign to f
output float g)// you can assign to g

Aliasing of arguments is not allowed.

Overview of the OpenGL Shading Language

State of the Art in Shading Hardware 6-22 SIGGRAPH 2002

A constant may be passed in as an argument even though a reference to a constant doesn't really exist. A
constant will generate a compile error if qualified by the output keyword. The scope rules for variables
declared within the body of the function are the same as in C.

Functions that return no value use void to signify this. Functions that accept no input arguments need not
use void; as in C++, since prototypes are required, there is no ambiguity when an empty argument list "()" is
declared.

Functions can be overloaded as in C++. This allows the same function name to be used for multiple
functions, as long as the argument list types differ. This is used heavily in the built-in functions. When
overloaded functions (or indeed any functions) are resolved, an exact match for the function's signature is
looked for. Other than auto-promotion of int to float, as needed, no promotion or demotion of the return
type or input argument types is done. All expected combination of inputs and outputs must be defined as
separate functions.

Built-in functions
The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a texture
map. There is no way in the language for these functions to be emulated by the user.

• They represent a trivial operation (clamp, mix, etc.) which are very simple for the user to write, but
they are very common and may have direct hardware support. It is a very hard problem for the
compiler to map expressions to 'complex' assembler instructions.

• They represent an operation which we hope to accelerate at some point. The trigonometry functions
fall into this category.

Many of the functions are similar to the same named ones in C, but they support vector input as well as the
more traditional scalar input. For operations on vectors, the output will have the same type as the input and
the function will have been applied component-by-component. The OpenGL Shading Language includes the
following built-in functions:

Trigonometry functions:

• Radians
• Degrees
• Sine
• Cosine
• Tangent
• Arcsine
• Arccosine
• Arctangent

Exponential functions:

• Power
• Exponential

Overview of the OpenGL Shading Language

SIGGRAPH 2002 6-23 State of the Art in Shading Hardware

• Log
• Square Root
• Inverse Square Root

Common functions:

• Absolute Value
• Sign
• Floor
• Ceiling
• Fraction
• Modulo
• Min
• Max
• Clamp
• Mix
• Step
• Smoothstep

Geometric functions:

• Length
• Distance
• Normalize
• Face Forward
• Reflect
• Dot Product
• Cross Product

Matrix functions:

• Matrix Multiply

Vertex processing functions are available only in shaders intended for use on the vertex processor:

• Element

Fragment processing functions are only available in shaders intended for use on the vertex processor:

• Texture Access
• Derivative
• Level-of-Detail
• Kill
• Noise

Overview of the OpenGL Shading Language

State of the Art in Shading Hardware 6-24 SIGGRAPH 2002

Built-in variables
The following attribute names are built into the OpenGL Shading Language and can be used from within a
vertex shader to access the current values of attributes defined by OpenGL:

attribute vec4 gl_Color;
attribute vec3 gl_Normal;
attribute vec4 gl_Vertex;
attribute vec4 gl_MultiTexCoord0;
attribute vec4 gl_MultiTexCoord1;
attribute vec4 gl_MultiTexCoord2;
attribute vec4 gl_MultiTexCoord3;
attribute vec4 gl_MultiTexCoord4;
attribute vec4 gl_MultiTexCoord5;
attribute vec4 gl_MultiTexCoord6;
attribute vec4 gl_MultiTexCoord7;
attribute vec4 gl_SecColor;
attribute vec3 gl_FrontMaterial[5];
attribute vec3 gl_BackMaterial[5];

As an aid to accessing the various components of the material arrays, the following built-in constants are
also built into the OpenGL Shading Language:

constant int gl_kEmmisiveColor = 0;
constant int gl_kAmbientColor = 1;
constant int gl_kDiffuseColor = 2;
constant int gl_kSpecularColor = 3;
constant int gl_kDiffuseAlpha = 4; // .x
constant int gl_kSpecularExponent = 4; // .y

As an aid to accessing OpenGL vertex processing state, the following uniform variables are built into the
OpenGL Shading Language and are accessible from within a vertex shader:

uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat3 gl_NormalMatrix;
uniform mat4 gl_TextureMatrix[8];
uniform vec3 gl_SceneAmbient;
uniform mat4 gl_TexGen[8];
uniform float gl_NormalScale;
uniform vec3 gl_Light0[8];
uniform vec3 gl_Light1[8];
uniform vec3 gl_Light2[8];
uniform vec3 gl_Light3[8];
uniform vec3 gl_Light4[8];
uniform vec3 gl_Light5[8];
uniform vec3 gl_Light6[8];
uniform vec3 gl_Light7[8];

// Additional lights would follow here if an implementation exports
// more than the minimum of 8.

Overview of the OpenGL Shading Language

SIGGRAPH 2002 6-25 State of the Art in Shading Hardware

As an aid to accessing the various components of the light arrays from within a vertex shader, the following
built-in constants are also built into the OpenGL Shading Language:

// Define the layout of the vec3 light parameters in the Light arrays.
// Note the two scalar spotlight values are stored in a vec3 for
// convenience.
const int gl_kAmbientIntensity = 0;
const int gl_kDiffuseIntensity = 1;
const int gl_kSpecularIntensity = 2;
const int gl_kPosition = 3;
const int gl_kHalfVector = 4;
const int gl_kAttenuation = 5;
const int gl_kSpotlightDirection = 6;
const int gl_kSpotlight = 7; // x = CutoffAngle, y = Exponent

As an aid to accessing OpenGL fragment processing state, the following uniform variables are built into the
OpenGL Shading Language and are accessible from within a fragment shader:

uniform vec4 gl_TextureEnvColor[8];
uniform float gl_FogDensity;
uniform float gl_FogStart;
uniform float gl_FogEnd;
uniform float gl_FogScale;// = 1 / (gl_FogEnd - gl_FogStart)
uniform vec3 gl_FogColor;

// Variables used in the pixel processing and imaging operations.
uniform vec4 gl_ColorScaleFactors; // RED/GREEN/BLUE/ALPHA_SCALE
uniform vec4 gl_ColorBiasFactors; // RED/GREEN/BLUE/ALPHA_BIAS
uniform float gl_DepthScaleFactor; // DEPTH_SCALE
uniform float gl_DepthBiasFactor; // DEPTH_SCALE
uniform float gl_IndexShift; // equals 2^INDEX_SHIFT
uniform float gl_IndexOffset; // INDEX_OFFSET
uniform mat4 gl_ColorMatrix; // set up to track state
uniform vec4 gl_PostColorMatrixScaleFactors;
uniform vec4 gl_PostColorMatrixBiasFactors;

The vertex shader has access to the following built-in varying variables which direct clipping and
rasterization activities:

varying vec4 gl_Position;// must be written to
varying float gl_PointSize;
varying vec4 gl_ClipVertex;

The fragment shader has access to the following built-in varying variables, which holds the x, y, z, and 1/w
values for the fragment being processed:

varying vec4 gl_FragCoord;

The fragment shader has access to the following built-in variables:

bool gl_FrontFacing;
vec4 gl_FragColor;
float gl_FragDepth;

Overview of the OpenGL Shading Language

State of the Art in Shading Hardware 6-26 SIGGRAPH 2002

float gl_FragStencil;
vec4 gl_FragData0-n // n is implementation-dependent

// Frame Buffer
vec4 gl_FBColor;
float gl_FBDepth;
float gl_FBStencil;
vec4 gl_FBDatan;

The following built-in varying variables can be written to from within a vertex shader and can be read from
within a fragment shader:

varying vec4 gl_FrontColor;
varying vec4 gl_BackColor;
varying vec4 gl_TexCoord0;
varying vec4 gl_TexCoord1;
varying vec4 gl_TexCoord2;
varying vec4 gl_TexCoord3;
varying vec4 gl_TexCoord4;
varying vec4 gl_TexCoord5;
varying vec4 gl_TexCoord6;
varying vec4 gl_TexCoord7;
varying vec4 gl_FrontSecColor;
varying vec4 gl_BackSecColor;
varying float gl_EyeZ;

Brick Shader

SIGGRAPH 2002 6-27 State of the Art in Shading Hardware

6.4 Brick Shader
Now that we have the basics of the OpenGL Shading Language in hand, let’s look at a simple example. In
this example, we’ll be applying a brick pattern to an object. The brick pattern will be calculated entirely
within a fragment shader.

Application Setup
The input to the vertex shader will be a single light position stored as a uniform variable and a normal and a
position for each vertex that are supplied through the usual OpenGL mechanisms. There is no need to supply
color or texture coordinates since these will be computed algorithmically in the fragment shader.

The uniform variables for the fragment shader are mortarThickness, brickColor, mortarColor,
brickMortarWidth, brickMortarHeight, mwf (mortar width fraction), and mhf (mortar height fraction).

The uniform variables are initialized by the application using the following C code:

float bc[3] = { 1.0, 0.3, 0.2 };
float mc[3] = { 0.85, 0.86, 0.84 };
float bmw = 0.22;
float bmh = 0.15;
float mwf = 0.94;
float mhf = 0.90;
float lightPosition[3] = { 0.0, 0.0, 4.0 };

glLoadUniform3fv(glGetUniformLocation(brickProgramObject,
"brickColor"), &bc[0]);

glLoadUniform3fv(glGetUniformLocation(brickProgramObject,
"mortarColor"),&mc[0]);

glLoadUniform1fv(glGetUniformLocation(brickProgramObject,
"brickMortarWidth"), &bmw);

glLoadUniform1fv(glGetUniformLocation(brickProgramObject,
"brickMortarHeight"), &bmh);

glLoadUniform1fv(glGetUniformLocation(brickProgramObject,
"mwf"), &mwf);

glLoadUniform1fv(glGetUniformLocation(brickProgramObject,
"mhf"), &mhf);

glLoadUniform3fv(glGetUniformLocation(brickProgramObject,
"LightPosition"), &lightPosition[0]);

Vertex shader
The code below is the vertex shader that is needed for our brick shader. This shader demonstrates some of
the capabilities of the OpenGL Shading Language:

varying float LightIntensity;
varying vec3 Position;
uniform vec3 LightPosition;

const float specularContribution = 0.7;
const float diffuseContribution = (1 - specularContribution);

Brick Shader

State of the Art in Shading Hardware 6-28 SIGGRAPH 2002

void main(void)
{
 vec4 pos = gl_ModelViewMatrix * gl_Vertex;
 Position = vec3(gl_Vertex);
 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
 vec3 lightVec = normalize(LightPosition - vec3(pos));
 vec3 reflectVec = reflect(lightVec, tnorm);
 vec3 viewVec = normalize(vec3(pos));

 float spec = clamp(dot(reflectVec, viewVec), 0, 1);
 spec = spec * spec;
 spec = spec * spec;
 spec = spec * spec;
 spec = spec * spec;

LightIntensity = diffuseContribution * dot(lightVec, tnorm) +
 specularContribution * spec;

 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

The purpose of this shader is to produce three values that will be interpolated across each primitive and
ultimately used by the fragment shader that will be described in the next section. These three values are light
intensity, vertex position in object space, and the transformed vertex position. These values are represented
in our vertex shader by the varying variables LightIntensity and Position (which are defined as varying
variables in the first two lines of the shader), and gl_Position (which is built in to the OpenGL Shading
Language and must be computed by every vertex shader).

Once we enter the main function, the first thing we do is compute the position of the vertex in world
coordinates. This is done by declaring a local variable pos and initializing it by multiplying the current
OpenGL model-view matrix and the incoming vertex value.

Next we use a constructor to convert the incoming vertex value to a vec3 and store it in our varying variable
Position. The underlying hardware will have a fixed number of interpolators for us to use, so there’s no
sense interpolating the w coordinate if we’re not going to need it in the fragment shader. As you can see,
there’s nothing to prevent a vertex shader from reading an input value (gl_Vertex) more than once.

After this, we need to compute the values needed for the light intensity calculation. The incoming normal
(gl_Normal) is transformed by the OpenGL normal transformation matrix and then normalized by calling
the built-in function normalize(). The light direction is computed by subtracting the world coordinate
position (pos) from the uniform variable that holds our light position in world coordinates. This vector is
also normalized. The reflection vector is computed by calling the built-in function reflect(), and the return
value from this function is also normalized. Finally, the viewing direction vector is computed by
normalizing the world coordinate position (without the w coordinate).

A specular value is then computed by using the built-in function dot() to compute the dot product of the
reflection vector and the view vector. At the time of this writing, the built-in power function (pow()) has not
been implemented, so we simply multiply the specular value by itself four times in order to achieve the same

Brick Shader

SIGGRAPH 2002 6-29 State of the Art in Shading Hardware

effect as pow(spec, 16). Finally, the light intensity is computed by taking 30% of the diffuse value and 70%
of the specular value.

Vertex shaders must compute a value for gl_Position and that is taken care of in the last line of code. The
current model-view-projection matrix is obtained from OpenGL state and is used to multiply the incoming
vertex value. The resulting transformed coordinate is stored in gl_Position as required by the OpenGL
Shading Language. This vertex value will subsequently be combined with others to construct a primitive,
and the resulting primitive will then be clipped, culled, and sent on for rasterization.

Fragment shader
The fragment shader below works with the vertex shader in the previous section to render objects with a
brick pattern.

uniform vec3brickColor;
uniform vec3mortarColor;

uniform floatbrickMortarWidth;
uniform floatbrickMortarHeight;
uniform floatmwf;
uniform floatmhf;

varying vec3 Position;
varying float LightIntensity;

void main (void)
{
 vec3ct;
 floatss, tt, w, h;

 ss = Position.x / brickMortarWidth;
 tt = Position.z / brickMortarHeight;

 if (fract (tt * 0.5) > 0.5)
 ss += 0.5;

 ss = fract (ss);
 tt = fract (tt);

 w = step (mwf, ss) - step (1 - mwf, ss);
 h = step (mhf, tt) - step (1 - mhf, tt);

 ct = clamp(mix(mortarColor, brickColor, w*h)*LightIntensity, 0, 1);

 gl_FragColor = vec4 (ct, 1.0);
}

This shader starts off by defining a few more uniform variables than did the vertex shader. The brick pattern
that will be rendered on our geometry is parameterized in order to make it easier to modify. The parameters
that are constant across an entire primitive can be stored as uniform variables and initialized (and later

Brick Shader

State of the Art in Shading Hardware 6-30 SIGGRAPH 2002

modified) by the application. This makes it easy to expose these controls to the end user for modification
through user interface elements such as sliders.

We want our brick pattern to be applied in a consistent way to our geometry in order to have the object look
the same no matter where it is placed in the scene or how it is rotated. The key to determining the placement
of the brick pattern is the value that is passed in the varying variable Position. This variable was computed at
each vertex by the vertex shader in the previous section, and it is interpolated across the primitive and made
available to the fragment shader at each fragment location. Our fragment shader can use this information to
determine where the fragment location is in relation to the algorithmically defined brick pattern.

The first step is to divide the object’s x position by the brick+mortar width and the z position by the
brick+mortar height. This gives us a “brick row number” (tt) and a “brick number” within that row (ss).
Keep in mind that these are signed, floating point values, so it is perfectly reasonable to have negative row
and brick numbers as a result of this computation.

The purpose of the next line is to offset every other row of bricks by half a brickwidth. The “brick row
number” (tt) is multiplied by 0.5 and the result is compared against 0.5. Half the time (or every other row)
this comparison will be true, and the “brick number” value is in incremented by 0.5 to offset the entire row.

Next, the built-in math function fract() is then used to obtain the fractional parts of our width and height
values. We then compute two values that tell us whether we are in the brick or in the mortar in the horizontal
direction (w) and in the vertical direction (h). The built-in function step() is used to produce a value of 1 if
the brick color is to be used, and 0 if the mortar color is to be used. If the surface of our brick is
parameterized to go from 0.0-1.0 in both width and height, then we can imagine that our brick pattern is the
brick color from 0.0-mwf in the width direction and 0.0-mhf in the height direction. The values of mwf and
mhf can be computed by the application to give a uniform mortar width in both directions based on the ratio
of brick+mortar width to brick+mortar height, or they can be chosen aribitrarily to give a mortar appearance
that “looks right.”

Finally, we compute the color of the fragment and store it in a temporary variable. The built-in function
mix() is used to choose the brick color or the mortar color, depending on the value of w*h. Since w and h can
only have values of 0.0 (mortar) or 1.0 (brick), we will chose the brick color only if both values are 1.0,
otherwise we will choose the mortar color. The resulting value is then multiplied by the light intensity, and
that result is clamped to the range [0.0, 1.0] and stored in a temprorary variable (ct). This temporary variable
is a vec3, so we create our final color value by using a constructor to add a 1.0 as the fourth element of a
vec4 and assign the result to our built-in variable gl_FragColor.

One possible improvement to this shader is to notice that we never actually used the y component of our
varying variable position. This value was interpolated but never used. Since hardware implementations will
have a fixed number of interpolators available, we would be making better use of our scarce resources by
passing the x and z components as a varying vec2 variable. This would make the code more cryptic, but it
may be worth doing if your program requires a large number of varying variables for other things.

When comparing this shader to the vertex shader in the previous example, we notice one of the key features
of the OpenGL shading language, namely that the language used to write these two shaders is almost
identical. Both shaders have a main function, some uniform variables, some local variables, expressions are
the same, built-in functions are called in the same way, constructors are used in the same way, and so on.
The only perceptible difference exhibited by these two shaders is that the varying variables were write-only

Brick Shader

SIGGRAPH 2002 6-31 State of the Art in Shading Hardware

for the vertex shader described in the previous section, and they are read-only for the fragment shader
described in this section.

Screen shots
The screen shots below show the results of our brick shaders. The first case shows diffuse lighting only and
was achieved simply by setting specularContribution to 0 and diffuseContribution to 1. The second image
shows the result of running the shaders as shown in the listings above.

Brick Shader

State of the Art in Shading Hardware 6-32 SIGGRAPH 2002

Bump Mapping and Environment Mapping

SIGGRAPH 2002 6-33 State of the Art in Shading Hardware

6.5 Bump Mapping and Environment Mapping
A variety of interesting effects can be applied to a surface using a technique called bump mapping. Bump
mapping involves modulating the surface normal before lighting is applied. The modulation can be done
algorithmically to apply a regular pattern, it can be done by adding noise to the components of a normal, or
it can be done by looking up a perturbation value in a texture map. This technique does not truly alter the
surface being shaded, it merely “tricks” the lighting calculations. Therefore, the “bumping” will not show up
on the silhouette edges of an object. Imagine modeling the moon as a sphere, and shading it with a bump
map so that it appears to have craters. The silhouette of the sphere will always be perfectly round, even if the
“craters” (bumps) go right up to the silhouette edge. In real life, you would expect the craters on the
silhouette edges to prevent the silhouette from looking perfectly round. For this reason, it is a good idea to
use bump mapping to only apply “small” effects to a surface (at least relative to the size of the surface).
Wrinkles on an orange, embossed logos, and pitted bricks are all good examples of things that can be
successfully bump mapped.

A technique that is used to model reflections in a complex environment without resorting to ray-tracing is
called environment mapping. In this technique, one or more texture maps are used to simulate the reflections
in the environment that is being rendered. It is best used when rendering objects that have mirror-like
qualities. One way to perform environment mapping is by using what is called a cube map. A cube map is a
texture that is made up of six textures, corresponding to top, bottom, and sides of the environment to be
modeled. Imagine placing a mirror-like object in the middle of a room. Texture maps can be created to
simulate the floor, ceiling, and walls of the room. To shade the mirror-like object, you need only use the
reflection vector to access the appropriate face of the cube map and return the value at that location. This
value can be combined with the surface color in order to shade the object.

The following OpenGL 2.0 shaders combine bump mapping and environment mapping in order to render an
object.

Application Setup
(Not available at the time of this writing.)

Vertex Shader
(Not available at the time of this writing.)

Fragment Shader
(Note: at the time of this writing, this example has NOT been run on a working OpenGL 2.0
implementation. See the OpenGL 2.0 location on the 3Dlabs web site at http://www.3dlabs.com to get an
up-to-date version of this paper, along with any corrections to the shader source below.)

In this example a normal is read from a texture map and transformed by the tangent space local coordinate
system (which is iterated across the primitive). The transformed normal together with an iterated eye vector
is used to calculate a reflected vector. The transformed normal then accesses the diffuse cube map and the
reflected vector accesses the specular cube map. The diffuse and specular light intensities from the cube
maps are combined with a base color and gloss value (another texture map) and the final color calculated.

Bump Mapping and Environment Mapping

State of the Art in Shading Hardware 6-34 SIGGRAPH 2002

There is a bit more setup work to perform prior to exeucting this fragment shader. Before we can run it, we
need to make sure the following have been set up using the normal OpenGL mechanisms:

• A cube map containing the diffuse reflection values that is loaded and bound to texture unit 0
• A cube map containing the specular reflection values that is loaded and bound to texture unit 1
• A regular texture map containing normals to be applied to the object
• A regular texture map that contains the base color and gloss for the object that is loaded and bound to

texture unit 3

// Define the interpolators and their binding to the values loaded by
// the vertex shader.
varying mat3 lcm; // local coordinate matrix
varying vec3 eye;
varying vec2 baseST;

void main (void)
{
 // Declarations
 vec3 N, reflect, normal;
 vec4 base; // base color and gloss

 // Define names for the texture units to which the texture
// objects are bound. We could just use numbers in the texture
// function, but this is more descriptive.

 const int diffuseCube = 0; // rgb
 const int specularCube = 1; // rgb
 const int normalMap = 2;
 const int baseColorMap = 3; // rgb, gloss

 // Fetch normal from normal map and transform it using the
 // interpolated local coordinate matrix.
 N = lcm * texture3 (normalMap, baseST);

 // Reflect the eye about the normal.
 reflect = 2 * N * dot (N, eye) - eye * dot (N , N);

 // Calculate the color. Base map holds gloss value
 // in alpha.
 base = texture4 (baseColorMap, baseST);

 vec3 color;
 color = texture3(diffuseCube, N) * vec3 (base.r, base.g, base.b) +
 texture3(specularCube, reflect) * base.a;

 gl_FragColor = vec4 (color, 1.0);
}

Screen Shots
(Not available at the time of this writing.)

BRDF Shader

SIGGRAPH 2002 6-35 State of the Art in Shading Hardware

6.6 BRDF Shader
In order to model more physically realistic surfaces, we must go beyond the simplistic lighting/reflection
model that is built into OpenGL. For some time, computer graphics researchers have been rendering images
with a more realistic reflection model called the bidirectional reflectance distribution function, or BRDF.
Instruments have been developed to measure the BRDF of real materials. Michael McCool of the University
of Waterloo and others have developed methods for factorizing this measured data in order to produce
texture maps that can be used to render BRDF surfaces on the current generation of graphics hardware. This
section describes the OpenGL Shading Language shaders that can be used to render McCool-style BRDF
surfaces using the BRDF textures available from the University of Waterloo. This section describes shaders
that implement the V*H*W parameterization described at the University of Waterloo web site
(http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/index.html.) These programs should work with the
sample V*H*W BRDF textures that are available there.

(Note: At the time of this writing, we do not have enough of OpenGL 2.0 implemented to execute these
shaders. Before doing anything with the shaders described in this section, please check the OpenGL 2.0
section of the 3Dlabs web site at http://www.3dlabs.com to obtain a more up-to-date version of this paper.
The shaders described in this section have been compiled and have been reviewed by others, but have NOT
yet been executed on OpenGL 2.0-capable hardware.)

Application Setup
To render BRDF surfaces using the following shaders, the application needs to set up a few uniform
variables. The vertex shader must provide the values for uniform variables that describe the eye position and
the position of a single light source in object space. (The shaders were developed this way for similarity to
the demo program available at the University of Waterloo web site.) The fragment shader requires the
application to provide values for two uniform variables: a color for a single light source, and a scale factor
that is used to rescale the values retrieved from the BRDF texture maps. (Each pair of BRDF texture maps
has been prescaled in order to preserve precision, and so must be rescaled using the rescale factors specific
to that set of BRDF texture maps.)

The application is expected to provide five attributes for every vertex. Three of them are standard OpenGL
attributes and need not be defined by our vertex program: gl_Vertex (position), gl_Normal (normal), and
gl_TexCoord0 (texture coordinate). The other two attributes are a tangent vector and a binormal vector
which are assumed to be computed by the application. These two attributes should be provided to OpenGL
using either the glVertexAttribute* function or by using a vertex array of type
GL_USER_ATTRIBUTE_ARRAYn. The location to be used for these user-defined attributes can be bound
to the appropriate attribute in our vertex shader by calling glBindAttributeLocation. For instance, if we
choose to pass the tangent values in at vertex attribute location 0 and the binormal values in at vertex
attribute location 1, we would set up the binding using these lines of code:

glBindAttributeLocation(myProgramID, 0, “tangent”);
glBindAttributeLocation(myProgramID, 1, “binormal”);

Prior to rendering, the application should also set up three texture maps: two cube maps that contain the
BRDF factorization data, and a regular texture that describes the surface color of the object. The BRDF “P”
texture map is assumed to be bound to texture unit 0, the BRDF “Q” texture map is assumed to be bound to

BRDF Shader

State of the Art in Shading Hardware 6-36 SIGGRAPH 2002

texture unit 1, and the surface color texture is assumed to be bound to texture unit 2. The BRDF texture maps
should be set up so that the edge of each texture map extends to infinity, not to wrap.

Vertex Shader
Our BRDF vertex shader is shown below. It is based on the vertex program that comes with the BRDF demo
program from the University of Waterloo. The purpose of this shader is to produce six varying values:

• gl_Position, as required by every vertex shader
• gl_TexCoord0, which will be used to access a texture map to get the base color of the surface
• inDirection, a vec3 representing the incoming light direction that is used to access the factorized

BRDF textures
• haDirection, a vec3 representing the half angle between the light direction and the viewing direction
• outDirection, a vec3 representing the outgoing light direction that is used to access the factorized

BRDF textures
• lightIntensity, a float that is used to store the cosine of the angle between the incoming surface normal

and the light source direction.

The incoming vertex position is transformed as required in the first line of code. Light direction, view
direction, and half-angle are normalized direction vectors that are computed in the next three lines. A diffuse
light intensity is then calculated based on the incoming normal and the light position. The following nine
lines of code compute orthonormal surface frames for each of the direction vectors. Finally, the incoming
texture coordinate is copied to a built-in varying variable so that it can be interpolated and used in the
fragment shader.

A couple of interesting language features are demonstrated in this shader. As you can see, incoming attribute
values can be read multiple times. The incoming vertex value is accessed three times and the incoming
normal is accessed four times. Variables can be declared when they are first used as shown by the local
variables lightDir, viewDir, and halfangleDir.

uniform vec3 lightPosition; // light position in object space
uniform vec3 eyePosition; // viewing position in object space

attribute vec3 tangent; // tangent for the specified vertex
attribute vec3 binormal; // binormal for the specified vertex

varying vec3 inDirection;
varying vec3 outDirection;
varying vec3 haDirection;
varying float lightIntensity;

void main(void)
{
 // transform incoming vertex
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

 // compute light direction vector
 vec3 lightDir = normalize(lightPosition - vec3 (gl_Vertex));

 // compute viewing direction vector

BRDF Shader

SIGGRAPH 2002 6-37 State of the Art in Shading Hardware

 vec3 viewDir = normalize(eyePosition - vec3 (gl_Vertex));

 // compute half angle direction vector
 vec3 halfangleDir = normalize(lightDir + viewDir);

 // compute diffuse reflection, clamp to [0,1]
 lightIntensity = clamp(dot(gl_Normal, lightDir), 0, 1);

 // compute outgoing direction
 outDirection.x = dot(viewDir, tangent);
 outDirection.y = dot(viewDir, binormal);
 outDirection.z = dot(viewDir, gl_Normal);

 // compute half-angle direction
 haDirection.x = dot(halfangleDir, tangent);
 haDirection.y = dot(halfangleDir, binormal);
 haDirection.z = dot(halfangleDir, gl_Normal);

 // compute incoming direction
 inDirection.x = dot(lightDir, tangent);
 inDirection.y = dot(lightDir, binormal);
 inDirection.z = dot(lightDir, gl_Normal);

 // copy texture coord into a standard varying variable
 gl_TexCoord0 = gl_MultiTexCoord0;
}

Fragment Shader
The fragment shader for our BRDF surface rendering is based on the background information provided at
http://www.cgl.uwaterloo.ca/Projects/rendering/Shading/database.html. The incoming direction vectors are
used to perform two texture lookups in the BRDF “P” cube map, and one texture lookup in the BRDF “Q”
cube map. The results of these lookups are multiplied together and scaled by a scaling factor that is specific
to the BRDF textures being used. Another texture lookup is performed to obtain the base color of the
surface, and the diffuse reflection from a single light source is also computed. These results are multiplied
by the previous result, and the final fragment color value is stored in gl_FragColor.

uniform vec3 scaleFactor; // BRDF scaling factors
uniform vec3 lightColor; // diffuse light color

varying vec3 inDirection;
varying vec3 outDirection;
varying vec3 haDirection;
varying float lightIntensity;

const int brdfP = 0; // BRDF cube map "P" uses texture unit 0
const int brdfQ = 1; // BRDF cube map "Q" uses texture unit 1
const int surfaceColor = 2; // Surface color texture uses texture unit 2

void main(void)
{

BRDF Shader

State of the Art in Shading Hardware 6-38 SIGGRAPH 2002

 vec3 color;

 // Compute p(Q(v))
 color = texture3(brdfP, inDirection);

 // Compute q(Q(h))
 color *= texture3(brdfQ, haDirection);

 // Compute p(Q(l))
 color *= texture3(brdfP, outDirection);

 // Multiply result by the scaling factor for the BRDF textures
 color *= scaleFactor;

 // Multiply result by the texture-mapped surface color
 color *= texture3(surfaceColor, gl_TexCoord0);

 // Multiply result by the light intensity
 color *= lightColor * vec3 (lightIntensity);

 // Clamp and add alpha component to produce final color
 gl_FragColor = vec4 (clamp(color, 0.0, 1.0), 1.0);
}

Screen Shots
(Not available at the time of this writing.)

Wood Shader

SIGGRAPH 2002 6-39 State of the Art in Shading Hardware

6.7 Wood Shader
Our first working OpenGL 2.0 shader was the brick pattern discussed in 6.4. Our second working shader
was the wood shader discussed in this section. We didn’t start with an existing RenderMan wood shader, but
instead came up with our own way of thinking about wood and how we could implement the necessary
OpenGL Shading Language programs given the constraints of our implementation. Still, our model of wood
ended up being remarkably similar to the wood shader defined in Advanced RenderMan

Our “theory” of wood is as follows:

• The wood is composed of light and dark areas alternating in concentric cylinders surrounding a central
axis.

• Noise is added to warp the cylinders to create a more natural-looking pattern
• The center of the “tree” is taken to be the y-axis
• Throughout the wood there is a high-frequency grain pattern of dark streaks. These streaks model the

look of an open-grained wood. These streaks are roughly parallel to the y-axis.

Application Setup
The wood shaders don’t require too much from the application. The application is expected to pass in a
vertex position and a normal per vertex using the usual OpenGL entry points. In addition, the vertex shader
takes a light position and a scale factor that are passed in as uniform variables. The fragment shader takes a
grain size, a color for the dark wood, and a color spread value that are also passed in as uniform variables.

The uniform variables needed for the wood shaders are initialized with the following C code:

float colorSpread[3] = { 0.3, 0.15, 0.0 };
float lightPosition[3] = { 0.0, 0.0, 4.0 };
float darkColor[3] = { 0.6, 0.3, 0.1};
float ringSize = 1.0;
float scale = 2.0;

glLoadUniform1fv(glGetUniformLocation(woodProgramObject,
"RingSize"), &ringSize);

glLoadUniform1fv(glGetUniformLocation(woodProgramObject,
"Scale"), &scale);

glLoadUniform3fv(glGetUniformLocation(woodProgramObject,
"LightPosition"), &lightPosition[0]);

glLoadUniform3fv(glGetUniformLocation(woodProgramObject,
"DarkColor"), &darkColor[0]);

glLoadUniform3fv(glGetUniformLocation(woodProgramObject,
"colorSpread"),&colorSpread[0]);

Vertex Shader
The wood vertex shader is actually pretty simple. To compute the reflected light intensity, we need to
transform the vertex into world coordinates as shown in the first line of code. Then we apply a scale factor to
the incoming vertex value. This is done to scale the object so that the grain pattern will appear at a visually
pleasing size in the final rendering. The scale factor can be changed for each object rendered, to make the

Wood Shader

State of the Art in Shading Hardware 6-40 SIGGRAPH 2002

object bigger or smaller relative to our “tree”. Position will be varied across the primitive and used in our
fragment shader for the position-dependent shading calculations.

The incoming normal is transformed by the current OpenGL normal matrix and then normalized. This
vector, the light position, and the view direction are used to compute the light intensity from a single white
light source. The light intensity is scaled by a factor of 1.5 in order to light the scene more fully. (The
fragment shader will ultimately be responsible for clamping the final colors to the range [0,1].) Finally, the
transformed vertex position is computed and stored in gl_Position as required by the OpenGL Shading
Language.

varying float LightIntensity;
varying vec3 Position;
uniform vec3 LightPosition;
uniform float Scale;

void main(void)
{

vec4 pos = gl_ModelViewMatrix * gl_Vertex;
Position = vec3(gl_Vertex) * Scale;
vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
LightIntensity =

dot(normalize(LightPosition - vec3(pos)), tnorm) * 1.5;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Fragment Shader
Most of the interesting work in our wood shader is done by the fragment shader. In this shader, we use the
object position and our wood parameter values in order to determine the color of the fragment. First we
define our uniform variables:

uniform float RingSize;
uniform vec3 DarkColor;
uniform vec3 ColorSpread;

RingSize represents the distance in the x-z plane from the middle of one dark band to the next. In order to
avoid doing a square root calculation (for performance reasons and because it hasn’t been implemented at
the time of this writing), RingSize is not a constant but a value that can be modified interactively to provide
a reasonable effect. DarkColor is the starting point for the wood color: we will add to this value to build up
the color of the lighter wood. ColorSpread is the amount of variation that we’ll have between the dark wood
and the light wood. Now we define the varying variables to match those in the vertex shader:

varying float LightIntensity;
varying vec3 Position;

As described in the previous section, the Position variable will be the foundation for our fragment
calculations. Our shader needs to have the property that it will always produce the same output for a
particular value of Position, so everything we do to determine our wood pattern algorithmically needs to be

Wood Shader

SIGGRAPH 2002 6-41 State of the Art in Shading Hardware

based on this value. The lightIntensity value will be used in the final stage of the shader to add in the
contribution from the light source. Once our uniform and varying variables have been declared, we begin the
main function:

void main (void)
{
 vec3 location = Position;

The first thing we do in our main function is to declare a variable called location and store in it the value of
Position. The OpenGL Shading Language says that varying variables are read-only as far as the fragment
shader is concerned. We will be modifying this interpolated value, so we need to store it in a local variable
for our own use.

 vec3 floorvec =
vec3(floor(Position.x * 10), 0, floor(Position.z * 10));

 vec3 noise = Position * 10 - floorvec - 0.5;
 noise *= noise;
 location += noise * 0.12;

Now we are getting to some interesting stuff. We want a method of creating some noise in our pattern that is
repeatable for a given Position value. For performance reasons (and because we haven’t implemented the
noise() function at the time of this writing), we’ve come up with a simple method that we can use to perturb
our location in a repeatable way. We’re simply going to use some of the low-order bits from each of the x
and z components of Position.

To do this, we create a vector called floorvec that contains the integer part of the x and z values multiplied
by 10. (We don’t need to waste cycles doing a floor() function on the y component because noise along the
tree axis is irrelevant for our purposes.) Once floorvec is computed, we subtract it from the Position vector
multiplied by 10. The result will be that the x and z components each contain a value between 0 and 1, and y
will contain 0. If we subtract 0.5 from each component, we will have values that range from -0.5 to 0.5.

This noise function has a bit of a problem. As the input values (Position.x and Position.z) change, the output
values will go from -0.5 to 0.5, then it will drop suddenly back to -0.5. This discontinuity will cause jarring
visual artifacts, so we smooth it out by squaring the noise value as shown in the next line of code. We now
have noise values that vary from 0 to 0.25 and the function is continuous. This noise vector is then
multiplied by an empirically chosen scale factor of 0.12 and added to the local variable that contains the
position. In this way, we are “warping” the current position by a small amount in order to sample the
algorithmically defined texture at a different location.

After this, we need to compute the distance from the tree’s axis in order to see where we fall relative to our
pattern of concentric circles. We do this in the x-z plane by squaring the values of the x and z components.
To determine where we are in the ring pattern, we take this distance and divide by RingSize (which we’ve
already squared to avoid performing a square root). The integer part of the result (ring) will tell us which
ring we’re in, and the fractional part will tell us how far we are into that ring:

 float dist = location.x * location.x + location.z * location.z;
 float ring = dist / RingSize;

Wood Shader

State of the Art in Shading Hardware 6-42 SIGGRAPH 2002

We base the “brightness” to be added on the fractional portion of our variable ring. This brightness value
will range from 0 to 1 as we move across a ring. If we do nothing further, we will have sharp contrast in the
wood color as our brightness goes from very near 1 back down to 0. Because of our sampling method, this
will result in severe aliasing artifacts. A cheap solution is to subtract the brightness from 1.0 once it gets
higher than 0.5. Now the brightness will be 0 at the start of a ring, increase to 0.5 at the center of the ring,
then decrease back to 0 at the start of the next ring. To get the initial value for our color we multiply the
brightness by 0.5 and by the ColorSpread uniform variable, then add this to our DarkColor value:

 float brightness = fract(ring);
 if (brightness > 0.5)
 brightness = (1.0 - brightness);
 vec3 color = DarkColor + 0.5 * brightness * ColorSpread;

To add more interest to the pattern, we compute another brightness factor based on a value of ring multiplied
by 7. This time, the computed brightness is subtracted from our accumulated color. The simple antialiasing
is applied in the same fashion. There are better ways to do antialiasing, but this method provides acceptable
results in terms of quality versus performance.

 brightness = fract(ring*7);
 if (brightness > 0.5)
 brightness = 1.0 - brightness;
 color -= 0.5 * brightness * ColorSpread;

Finally, we add a third level of brightness variation based on a value of ring multiplied by 47. (Although the
brightness pattern repeats, the values of 7 and 47 that we’ve used make it pretty difficult to discern the
repeated pattern.) This time, we simulate an open-grained pattern in the wood with tiny streaks that are
parallel to the y-axis. Every so often, the conditional test in the fourth line of code below will be true, and a
some amount of brightness will be subtracted from our accumulated color. This computation is not
antialiased like the previous ones, so in some orientations of the object we will see these streaks start off
nearly the same color as the surrounding wood, then get darker and darker, and then disappear entirely.
These streaks will show up more or less often if you very the constants in the third and fourth line of code
below.

 brightness = fract(ring*47);
 float line = fract(Position.z + Position.x);
 float snap = floor(line * 30) * (1.0/30.0);
 if (line < snap + 0.004)
 color -= 0.5 * brightness * ColorSpread;

At this point, we’ve created the wood color for the fragment. We multiply it by the varying variable
LightIntensity in order to simulate diffuse reflection, and then we clamp the color to the range [0,1]. All
that’s needed now is to add an alpha component of 1.0 and assign the result to the built-in variable
gl_FragColor:

 color *= LightIntensity;
 color = clamp(color, 0, 1);

 gl_FragColor = vec4(color, 1.0);
}

Wood Shader

SIGGRAPH 2002 6-43 State of the Art in Shading Hardware

Screen shots

Wood Shader

State of the Art in Shading Hardware 6-44 SIGGRAPH 2002

Acknowledgements

SIGGRAPH 2002 6-45 State of the Art in Shading Hardware

6.8 Acknowledgements
I would like to thank my colleagues at 3Dlabs for their assistance with the OpenGL 2.0 effort in general and
for help in developing this paper. Specifically, John Kessenich, Barthold Lichtenbelt, and Steve Koren have
been doing amazing work implementing the OpenGL Shading Language compiler, linker, and object
support in the OpenGL ICD. John developed the wood shader shown in section 6.7 and supplied the screen
shots. Barthold developed an OpenGL Shading Language demo program, excerpts of which are included in
sections 6.2 and 6.4. Steve worked on the brick shader and supplied the screen shots for it.

Dave Baldwin of 3Dlabs was the original architect of the OpenGL Shading Language. Very little in the
language has changed since his original proposal. Dale Kirkland, Jeremy Morris, Phil Huxley, and Antonio
Tejada of 3Dlabs have been involved in many of the OpenGL 2.0 discussions and have provided a wealth of
good ideas and encouragement as we have moved forward. Other members of the 3Dlabs driver
development teams in Egham, U.K., Huntsville, AL, and Austin, TX have contributed as well. The 3Dlabs
executive staff should be commended for having the vision to move forward with the OpenGL proposal and
the courage to allocate resources to its development. Thanks to Osman Kent, Neil Trevett, Jerry Peterson,
and John Schimpf in particular.

Numerous other people have been involved in the OpenGL 2.0 discussions. We would like to thank our
colleagues and fellow ARB representatives at ATI, SGI, NVIDIA, Intel, Microsoft, Evans & Sutherland,
IBM, Sun, Apple, Imagination Technologies, Dell, Compaq, and HP for contributing to discussions and for
helping to move the process along.

A big thank you goes to the software developers who have taken the time to talk with us, send us email, or
answer survey questions on OpenGL.org. Our ultimate aim is to provide you with the best possible API for
doing graphics application development, and the time that you have spent telling us what you need has been
invaluable. A few ISVs lobbied long and hard for certain features, and they were able to convince us to make
some significant changes to the original OpenGL 2.0 proposal. Thanks, all you software developers, and
keep telling us what you need!

Finally, a debt of gratitude is owed to the designers of the C programming language, the designers of
RenderMan, and the designers of OpenGL, the three standards that have provided the strongest influence on
our efforts. Hopefully, the OpenGL Shading Language will continue their traditions of success and
excellence.

Further information

State of the Art in Shading Hardware 6-46 SIGGRAPH 2002

6.9 Further information
Our intention is to continue providing developers with the latest and greatest information about the OpenGL
2.0 effort at the 3Dlabs web site, http://www.3dlabs.com. Look for an “OpenGL 2.0” link on our home page.
On the OpenGL 2.0 page, you will find the latest versions of the OpenGL 2.0 white papers, slides from
recent OpenGL 2.0 presentations, extension specifications, and sample code and shaders. Interested readers
should peruse all the white papers, since they go into detail about the many facets of the OpenGL 2.0 effort.
This white paper will be updated around the time of SIGGRAPH 2002 in order to fix errors and include
updated code and screen shots

Chapter 7

API Design
Michael McCool

SMASH Metaprogramming Shader API

Michael D. McCool, Qin Zheng and Tiberiu Popa

Computer Graphics Lab
Department of Computer Science

University of Waterloo

5th April 2002

1 Introduction
Modern graphics accelerators have embedded programmable components in the form of ver-
tex and fragment shading units. Current APIs permit specification of the programs for these
components using an assembly-language level interface. Shader compilers are available [5, 7]
but these read in an external string specification, which can be inconvenient. Both the DX9
and OpenGL 2.0 proposals also use an external high-level shading language separate from the
host language, with actual shader programs specified either in strings or in separate files.

It is possible, using C++, to define a high-level shading language directly in the API.
This would permit more direct interaction with the specification of textures and parameters,
simplifies implementation (an LR parser is not required), and permits on-the-fly generation
and manipulation of shader programs to specialize them [2] as needed. Precompiled shader
programs could still be used simply by compiling and running a C++ program defining an
appropriate shader and dumping a precompiled binary representation. However, parameter
naming and binding are simplified if the application program and the shader program are
compiled together, since objects defining named parameters and textures can be accessed by
the shader definition directly.

SMASH supports two levels of API: an OpenGL-like low-level C-compatible API, whose
calls are indicated with the prefix sm, and a high-level C++ API whose calls and types are
indicated with the prefix Sm. In this document, we focus on the C++ shader API. The low-
level shader API, which the high-level shader API compiles to, is based on the DX9 assembly
language but with a function call-based API in the style of ATI’s OpenGL vertex shader ex-
tensions.

This whitepaper describes a work in progress and the detailed syntax of the final system
may differ from what is shown below. Please access our website at

http://www.cgl.uwaterloo.ca/Projects/rendering/

for more up to date information. The syntax described here also differs from that documented
for earlier versions of SMASH.

2 Metaprogramming Parser
String based shading languages need a separate parsing step, usually based on an LR gram-
mar parser-compiler such as YACC or Bison, to convert the syntax of the shader program to a
parse tree. However, using a metaprogramming API, the shader program is specified using a

7–1

SMASH Metaprogramming Shader API 7–2

sequence of function calls originating directly in the application program. The API then inter-
prets this sequence of calls as a set of “tokens” to be used to generate a parse tree which can
in turn be compiled by an on-the-fly compiler backend in the API driver library. Expressions
in a shading language can be parsed and type-checked at the application program’s compile
time using operator overloading. To do this, overloaded operator functions are defined that
construct symbolic parse trees for the expressions rather than executing computations directly.
The “variables” in the shader are in fact smart reference-counting pointers to nodes in di-
rected acyclic graphs representing expressions, and each operator allocates a new node and
uses smart pointers to refer to its children. The reference-counting smart pointers implement
a simple garbage collection scheme which in this case is adequate to avoid memory leaks.
Compiling expressions in this way eliminates a large chunk of the grammar for the shading
language; the API gets passed a complete parse tree for expressions directly, and does not have
to build it itself by parsing a flat sequence of tokens. Each assignment in sequence is recorded
as a statement in the shader program and buffered until the entire sequence of commands has
been received. When the shader program is complete, code generation and optimization is
performed by the driver, resulting internally in machine language which is prepared for down-
loading to the specified shader unit when the shader program is bound.

Eventually, when shading units support control constructs, the shading language can be
extended with API calls that embed tokens for control keywords in the shader statement se-
quence: SmIF(cond), SmWHILE(cond), SmENDIF(), etc. Complex statements are re-
ceived by the API as a sequence of such calls/tokens. For instance, a WHILE statement would
be presented to the API as a WHILE token (represented by an SmWHILE(cond) function
call; note the parameter, which refers to an expression parse tree for the condition), a se-
quence of other statements, and a matching ENDWHILE token. Use of these constructs can
be wrapped in macros to make the syntax slightly cleaner (i.e. to hide semicolons and function
call parenthesis):

#define SM IF(cond) SmIF(cond);
#define SM ELSEIF(cond) SmELSEIF(cond);
#define SM ELSE SmELSE();
#define SM ENDIF SmENDIF();
#define SM WHILE(cond) SmWHILE(cond);
#define SM ENDWHILE SmENDWHILE();
#define SM DO SmDO();
#define SM UNTIL(cond) SmUNTIL(cond);
#define SM FOR(init,cond,inc) SmFOR(init,cond,inc);
#define SM ENDFOR SmENDFOR();

Since expression parsing (and type checking) is done by C++ at the compile time of the
host language, all that is needed to parse structured control constructs is a straightforward
recursive-descent parser. This parser will traverse the buffered token sequence when the shader
program is complete, generating a full parse tree internally. Code generation can then take
place in the usual way.

Although true conditional execution and looping are not yet available in any commercial
real-time shading system, such control constructs can theoretically be implemented efficiently
in the context of a long texture lookup latency with either a recirculating pipeline or a multi-
threaded shading processor.

3 Testbed
Our high-level shader API is built on top of SMASH, a testbed we have developed to ex-
periment with possible next-generation graphics hardware features and their implementation.

SMASH Metaprogramming Shader API 7–3

This system is modular. Pipelines can be built with any number of shading processors or other
types of modules (such as rasterizers or displacement units) chained together in sequence or
in parallel. The API has to deal with the fact that any given SMASH system might have a
variable number of shading units, and that different shading units might have slightly different
capabilities (for instance, vertex shaders might not have texture units, and fragment shaders
may have a limited number of registers and operations). These restrictions are noted when a
system is built and the shader compiler adapts to them.

The API currently identifies shaders by pipeline depth. In the usual case of a vertex shader
and a fragment shader, the vertex shader has depth 0 and the fragment shader has depth 1.
When a shader program is downloaded, the packet carrying the program information has a
counter. If this counter is non-zero, it is decremented and the packet is forwarded to the next
unit in the pipeline. Otherwise, the program is loaded and the packet absorbed. Modules in
the pipeline that do not understand a certain packet type are also supposed to forward such
packets without change. A flag in each packet indicates whether or not packets should be
broadcast over parallel streams or not; shader programs are typically broadcast. In this fashion
shader programs can be sent to any shader unit in the pipe. Sequences of tokens defining a
shader program are defined using a sequence of API calls inside a matched pair of SmBegin-
Shader(shaderlevel) and SmEndShader() calls. Once defined, a shader can be
loaded using the SmBindShader(shaderobject) call.

When a program is running on a shader unit, vertex and fragment packets are rewritten by
that unit. The system supports packets of length up to 255 words, not counting a header which
gives the type and length of each packet. Each word is 32 bits in length, so shaders can have up
to 255 single-precision inputs and outputs.1 Type declarations in shader parameter declaration
can be used to implicitly define packing and unpacking of shorter parameters to conserve
bandwidth when this full precision is not necessary. Other units, such as the rasterizer and
compositing module, also need to have packets formatted in a certain way to be meaningful;
in particular, the rasterizer needs the position of a vertex in a certain place in the packet (at
the end, consisent with the order of parameter and vertex calls). These units also operate
by packet rewriting; for instance, a rasterizer parses sequences of vertices according to the
current geometry mode, reconstructs triangles from them, and converts them into streams of
fragments.

4 Parameter Binding
It is convenient to support two different techniques for passing parameters to shaders. For
semi-constant parameters, the use of named parameters whose values can be changed at any
time and in any order is convenient. We will give these parameters the special name of at-
tributes and will reserve the word parameters for values specified per-vertex. A named at-
tribute is created simply by constructing an object of an appropriate type:

// create named transformation attributes
SmAttributeAffXform3x4f modelview;
SmAttributeProjXform4x4f perspective;
// create named light attributes
SmAttributeColor3f light color;
SmAttributePoint3f light position;

The constructor of these classes makes appropriate calls into the API to allocate state for these
attributes, and the destructor makes calls to deallocate this state. Operators overloaded on

1In practice, to support antialiasing at the fragment level, extra overhead may also be required to transmit differ-
entials. Using half precision for two differential values per parameter doubles the amount of space required for each
parameter and cuts the maximum number of parameters in half.

SMASH Metaprogramming Shader API 7–4

these classes are used in the shader definition to access these values. When a shader definition
uses such an attribute the compiler notes this fact and arranges for the current value of each
such attribute to be bound to a constant register in the shader unit when the shader program is
loaded. Attributes of all types can be associated with stacks for save/restore. For convenience,
operators are overloaded on both the classes themselves and pointers to them so either implicit
or explicit allocation and deallocation can be used. Arrays of attributes are supported with
special classes as well.

For parameters whose values change at every vertex, for efficiency we have chosen to
make the order of specification of these parameters important. In immediate mode, a sequence
of generic multidimensional parameter calls simply adds parameters to a packet, which is sent
off as a vertex packet when the vertex call is made (after adding the last few parameters given
in the vertex call itself). This is actually supported directly in the low-level API. For instance,
suppose we want to pass a tangent vector, a normal, and a texture coordinate to a vertex shader
at the vertices of a single triangle. In immediate mode we would use calls of the form

smBegin(SM TRIANGLES);
smVector3fv(tangent[0]);
smNormal3fv(normal[0]);
smTexCoord2fv(texcoord[0]);
smVertex3fv(position[0]);

smVector3fv(tangent[1]);
smNormal3fv(normal[1]);
smTexCoord2fv(texcoord[1]);
smVertex3fv(position[1]);

smVector3fv(tangent[2]);
smNormal3fv(normal[2]);
smTexCoord2fv(texcoord[2]);
smVertex3fv(position[2]);

smEnd();

The types given above are optional, and are checked at runtime only in a special “test mode”.
High-performance runtime mode, which is invoked by linking to a different version of the API
library, simply assumes the types match. The generic parameter call smParam* can be used
in place of smVector*, smNormal*, etc. Vertex and parameter arrays are of course also
supported for greater efficiency.

Declarations inside every shader definition provide the necessary information to enable
the system to make sure the necessary named parameters are loaded into the shader and that
unnamed parameters are unpacked in the right order for vertices and fragments. The API
must also ensure that when a shader is bound that any texture objects it uses are also bound.
The C++ API itself also uses classes to wrap low-level texture objects so that within a shader
definition a texture lookup can be specified as if it were an array access. As with attributes,
operators are overloaded on pointers to texture objects as well as on texture objects themselves.
To avoid confusion with the [] array-access operator, a special class is defined for arrays of
texture objects.

In the rest of the paper we will give a sequence of examples to demonstrate the high-level
C++ shader API.

SMASH Metaprogramming Shader API 7–5

5 Modified Phong Lighting Model
Consider the modified (reciprocal) Blinn-Phong lighting model:

Lo =
(

kd[u] + ks[u](n̂ · ĥ)q
)

max(0, (n̂ · l̂))I`/r2

`

where v̂ is the normalized view vector, l̂ is the normalized light vector, ĥ = norm(v̂ + l̂) is
the normalized half vector, n̂ is the normalized surface normal, I` is the light source intensity,
r` is the distance to light source, kd[u], ks[u], and q are parameters of the lighting model, and
u is a 2D surface texture coordinate.

We will implement this using per-pixel computation of the specular lobe and texture map-
ping of kd and ks. In general, the notation t[u] indicates a filtered and interpolated texture
lookup, not just a simple array access (although, if the texture object access modes are set up
appropriately, it can be made equivalent to a simple array access).

5.1 Vertex Shader
This shader computes the model-view transformation of position and normal, the projective
transformation of view-space position into device space, the halfvector, and the irradiance.
These values will be ratiolinearly interpolated by the rasterizer and the interpolated values
will be assigned to the fragments it generates. The rasterizer expects the last parameter in each
packet to be a device-space 4-component homogeneous point.

SmShader phong0 = SmBeginShader(0); {
// declare vertex parameters, in order given
SmInputTexCoord2f ui; // texture coords
SmInputNormal3f nm; // normal vector (MCS)
SmInputPoint3f pm; // position (MCS)

// declare outputs, in order sent
SmOutputVector3f hv; // half-vector (VCS)
SmOutputTexCoord2f uo; // texture coords
SmOutputNormal3f nv; // normal (VCS)
SmOutputColor3f ec; // irradiance
SmOutputPoint4f pd; // position (HDCS)

// compute VCS position
SmRegPoint3f pv = modelview * pm;
// compute DCS position
pd = perspective * pv;
// compute normalized VCS normal
nv = normalize(nm * inverse(modelview));
// compute normalized VCS light vector
SmRegVector3f lvv = light position - pv;
SmRegParam1f rsq = 1.0/(lvv|lvv);
lvv *= sqrt(rsq);
// compute irradiance
SmRegParam1f ct = max(0,(nv|lvv));
ec = light color * rsq * ct;
// compute normalized VCS view vector
SmRegVector3f vv = -normalize(pv);
// compute normalized VCS half vector

SMASH Metaprogramming Shader API 7–6

hv = normalize(lvv + vv);
// pass through texture coordinates
uo = ui;

} SmEndShader();

We do not need to provide prefixes for the utility functions normalize, sqrt, etc. since
they are distinguished by the type of their arguments. In our examples we will also highlight,
using boldface, the use of externally declared attribute and texture objects.

The types SmInput* and SmOutput* are classes whose constructors call allocation
functions in the API. The order in which these constructors are called provides the necessary
information to the API on the order in which these values should be unpacked from input
packets and packed into output packets. Temporary registers can also be declared explictly
as shown, although of course the compiler will declare more internally in order to implement
expression evaluation, and will optimize register allocation as well. These “register” declara-
tions, therefore, are really just smart pointers to expression parse trees.

SMASH permits allocation of named transformation matrices in the same manner as other
attributes. Matrices come in two varieties, representing affine transformations and projective
transformations. When accessing a matrix value, the matrix can be bound either as a transpose,
inverse, transpose inverse, adjoint, or transpose adjoint. The adjoint is useful as it is equiva-
lent to the inverse within a scale factor. However, we do not need to declare these bindings
explicitly since simply using a object representing a named attribute or matrix stack is enough
to bind it to the shader and for the API to arrange for that parameter to be sent to the shader
processor when updated. The symbolic functions transpose, inverse, adjoint, etc.
cause the appropriate version of the matrix to be bound to the shader.

5.2 Fragment Shader
This shader completes the Blinn-Phong lighting model example by computing the specular
lobe and adding it to the diffuse lobe. Both reflection modes are modulated by specular
and diffuse colors that come from texture maps using the previously declared texture objects
phong kd and phong ks. The rasterizer automatically converts 4D homogenous device
space points (specifying the positions of vertices) to normalized 3D device space points (spec-
ifying the position of each fragment). The 32-bit floating-point fragment depth z comes first
in the output packet to automatically result in the correct packing and alignment for x and y.

The Phong exponent is specified here as a named attribute. Ideally, we would antialias this
lighting model by clamping the exponent as a function of distance and curvature [1], but we
have not implemented this functionality.

SmShader phong1 = SmBeginShader(1); {
// declare inputs, in order given
SmInputVector3f hv; // half-vector (VCS)
SmInputTexCoord2f u; // texture coordinates
SmInputNormal3f nv; // normal (VCS)
SmInputColor3f ec; // irradiance
SmInputParam1f pdz; // fragment depth (DCS)
SmInputParam2us pdxy; // fragment 2D position (DCS)

// declare outputs, in order sent
SmOutputColor3f fc; // final fragment color
SmOutputParam1f fpdz; // final fragment depth
SmOutputParam2us fpdxy; // final fragment 2D position

// compute texture-mapped diffuse lobe

SMASH Metaprogramming Shader API 7–7

fc = phong kd[u];
// compute texture-mapped specular lobe
fc += phong ks[u]

* pow((normalize(hv)|normalize(nv)),phong exp);
// multiply lighting model by irradiance
fc *= ec;
// pass through depth and position
fpdz = pdz;
fpdxy = pdxy;

} SmEndShader();

Since it is not needed for bit manipulation, we use the operator “|” to indicate the inner
(dot) product between vectors rather than bitwise OR. We also use the operator “&” for the
cross product, which has the advantage that the triple product can be easily defined. However,
parentheses should be always be used around dot and cross products when they are used in
other expressions due to the low precendence of these operators.

Matrix multiplications are indicated with the “*” operator. In matrix-vector multiplications
if the vector appears on the right it is interpreted as a column and if on the left as a row. For
the most part this eliminates the need to explicitly specify transposes. Since we have chosen
to use “*” to represent matrix multiplication and not the more abstract operation of typed
transformation application, to transform a normal you have to explicitly specify the use of the
inverse and use the normal as a row vector. Use of the “*” operator on a pair of tuples of
any type results in pairwise multiplication. Use of “*” between a 1D scalar value and any nD
tuple results in scalar multiplication.

6 Separable BRDFs and Material Mapping
A bidirectional reflection distribution function f is in general a 4D function that relates the
differential incoming irradiance to the differential outgoing radiance.

Lo(x, ω̂o) =

∫

Ω

f(ω̂o,x, ω̂i) max(0, n̂ · ω̂i) Li(x, ω̂i) dω̂i.

Relative to a point source, which would appear as an impulse function in the above integral,
the BRDF can be used as a lighting model:

Lo(x, ω̂o) = f(ω̂o,x, ω̂i) max(0, n̂ · ω̂i) I`/r2

` .

In general, it is impractical to tabulate a general BRDF. A 4D texture lookup would be re-
quired. Fortunately, it is possible to approximate BRDFs by factorization. A numerical tech-
nique called homomorphic factorization [4] can be used to find a separable approximation to
any shift-invariant BRDF:

fm(ω̂o, ω̂i) ≈ pm(ω̂o) qm(ĥ) pm(ω̂i)

In this factorization, we have chosen to factor the BRDF into terms dependent directly on
incoming direction, outgoing direction, and half vector direction, all expressed relative to the
local surface frame. Other parameterizations are possible but this one seems to work well in
many circumstances and is easy to compute.

To model the dependence of the reflectance on surface position, we can sum over several
BRDFs, using a texture map to modulate each BRDF. We call this material mapping:

f(ω̂o,u, ω̂i) =
M−1
∑

m=0

tm(u) fm(ω̂o, ω̂i)

SMASH Metaprogramming Shader API 7–8

=
M−1
∑

m=0

tm(u) pm(ω̂o) qm(ĥ) pm(ω̂i).

When storing them in a fixed-point format, we also rescale the texture maps to maximize
precision:

f(ω̂o,u, ω̂i) =
M−1
∑

m=0

αmt′m(u)p′m(ω̂o)q
′

m(ĥ)p′m(ω̂i).

6.1 Vertex Shader
Here is a vertex shader to set up material mapping using a separable BRDF decomposition for
each material.

SmShader hf0 = SmBeginShader(0); {
// declare vertex parameters, in order given
SmInputTexCoord2f ui; // texture coords
SmInputVector3f t1; // primary tangent
SmInputVector3f t2; // secondary tangent
SmInputPoint3f pm; // position (MCS)

// declare output parameters, in order given
SmOutputVector3f vvs; // view-vector (SCS)
SmOutputVector3f hvs; // half-vector (SCS)
SmOutputVector3f lvs; // light-vector (SCS)
SmOutputTexCoord2f uo; // texture coords
SmOutputColor3f ec; // irradiance
SmOutputPoint4f pd; // position (HDCS)

// compute VCS position
SmRegPoint3f pv = modelview * pm;
// compute DCS position
pd = perspective * pv;
// transform and normalize tangents
t1 = normalize(modelview * t1);
t2 = normalize(modelview * t2);
// compute normal via a cross product
SmRegNormal3f nv = normalize(t1 & t2);
// compute normalized VCS light vector
SmRegVector3f lvv = light position - pv;
SmRegParam1f rsq = 1.0/(lvv|lvv);
lvv *= sqrt(rsq);
// compute irradiance
SmRegParam1f ct = max(0,(nv|lvv));
ec = light color * rsq * ct;
// compute normalized VCS view vector
SmRegVector3f vv = -normalize(pv);
// compute normalized VCS half vector
SmRegVector3f hv = norm(lvv + vv);
// project BRDF parameters onto SCS
vvs = SmRegVector3f((vvv|t1),(vvv|t2),(vvv|nv));
hvs = SmRegVector3f((hvv|t1),(hvv|t2),(hvv|nv));

SMASH Metaprogramming Shader API 7–9

lvs = SmRegVector3f((lvv|t1),(lvv|t2),(lvv|nv));
// pass through texture coordinates
uo = ui;

} SmEndShader();

6.2 Fragment Shader
The fragment shader completes the material mapping shader by using an application program
loop (running on the host) to generate an unrolled shader program. Note that a looping con-
struct is not required in the shader program to implement this. In fact, the API does not even
see the loop, only the calls it generates.

SmShader hf1 = SmBeginShader(1); {
// declare parameters, in order given
SmInputVector3f vv; // view-vector (SCS)
SmInputVector3f hv; // half-vector (SCS)
SmInputVector3f lv; // light-vector (SCS)
SmInputTexCoord2f u; // texture coordinates
SmInputColor3f ec; // irradiance
SmInputParam1f pdz; // fragment depth (DCS)
SmInputParam2us pdxy; // fragment position (DCS)

// declare outputs, in order sent
SmOutputColor3f fc; // fragment color
SmOutputParam1f fpdz; // fragment depth
SmOutputParam2us fpdxy; // fragment position

// intialize total reflectance
fc = SmColor3f(0.0,0.0,0.0);
// sum up contribution from each material
for (int m = 0; m < M; m++) {

fc += hf mat[m][u] * hf alpha[m]
* hf p[m][vv] * hf q[m][hv] * hf p[m][lv];

}
// multiply by irradiance
fc *= ec;
// pass through fragment position and depth
fpdz = pdz;
fpdxy = pdxy;

} SmEndShader();

Here the texture array objects hf mat, hf p, and hf q should have been previously defined,
along with the normalization factor attribute array hf alpha. The texture objects hf p and
hf q should have been set up as cube maps so unnormalized direction vectors can be used
directly as texture parameters.

7 Marble and Wood
To implement marble, wood, and similar materials, we have used the simple parameterized
model for such materials proposed by John C. Hart et al. [3]. This model is given by

t(x) =
N−1
∑

i=0

αi|n(2i
x)|,

SMASH Metaprogramming Shader API 7–10

u = x
T
Ax + t(x),

kd(x) = cd[u],

ks(x) = cs[u].

where n is a bandlimited noise function such as Perlin noise [6], t is the “turbulence” noise
function synthesized from it, A is a 4 × 4 symmetric matrix giving the coefficients of the
quadric function x

T
Ax, cd and cs are a 1D MIP-mapped texture maps functioning as filtered

color lookup tables, and x is the model-space (normalized homogeneous) position of a surface
point. The outputs need to be combined with a lighting model, so we will combine them with
the Phong lighting model (we could just as easily have used separable BRDFs and material
maps, with one color lookup table for each).

Generally speaking we would use fractal turbulence and would have αi = 2i; however, for
the purposes of this example we will permit the αi values to vary to permit further per-material
noise shaping and will bind them to named attributes. Likewise, various simplifications would
be possible if we fixed A (marble requires only a linear term, wood only a cylinder) but we
have chosen to give an implementation of the more general model and will bind A to a named
attribute.

The low-level SMASH API happens to have support for Perlin noise, generalized fractal
noise, and generalized turbulence built in, so we do not have to do anything special to evaluate
these noise functions. If we had to compile to a system without noise hardware, we would
store a periodic noise function in a texture map and then could synthesize aperiodic fractal
noise by including appropriate rotations among octaves in the noise summation.

7.1 Vertex Shader
The vertex shader sets up the Phong lighting model, but also computes half of the quadric as a
linear transformation of the model space position. Note that this can be correctly ratiolinearly
interpolated.

SmShader pnm0 = SmBeginShader(0); {
// declare vertex parameters, in order given
SmInputNormal3f nm; // normal vector (MCS)
SmInputPoint3f pm; // position (MCS)

// declare outputs, in order sent
SmOutputPoint4f ax; // coeffs x MCS position
SmOutputPoint4f x; // position (MCS)
SmOutputVector3f hv; // half-vector (VCS)
SmOutputVector3f nv; // normal (VCS)
SmOutputColor3f ec; // irradiance
SmOutputPoint4f pd; // position (HDCS)

// transform position
SmRegPoint3f pv = modelview * pm;
pd = perspective * pv;
// transform normal
nv = normalize(nm * inverse(modelview));
// compute normalized VCS light vector
SmRegVector3f lvv = light position - pv;
SmRegParam1f rsq = 1.0/(lvv|lvv);
lvv *= sqrt(rsq);
// compute irradiance

SMASH Metaprogramming Shader API 7–11

SmRegParam1f ct = max(0,(nv|lvv));
ec = light color * rsq * ct;
// compute normalized VCS view vector
SmRegVector3f vv = -normalize(pv);
// compute normalized VCS half vector
hv = norm(lvv + vv);
// pass through texture coordinates
uo = ui;

// projectively normalize position
x = projnorm(pm);
// compute half of quadric
ax = quadric coefficients * x;

} SmEndShader();

7.2 Fragment Shader
The fragment shader completes the computation of the quadric and the turbulence function
and passes their sum through the color lookup table. Two different lookup tables are used to
modulate the specular and diffuse parts of the lighting model, which will permit, for example,
dense dark wood to be shinier than light wood (with the appropriate entries in the lookup
tables).

SmShader pnm1 = SmBeginShader(1); {
// declare parameters, in order given
SmInputPoint4f ax; // coeffs x MCS position
SmInputPoint4f x; // position (MCS)
SmInputVector3f hv; // half-vector (VCS)
SmInputVector3f nv; // normal (VCS)
SmInputColor3f ec; // irradiance
SmInputParam1f pdz; // fragment depth (DCS)
SmInputParam2us pdxy; // fragment 2D position (DCS)

// declare outputs, in order sent
SmOutputColor3f fc; // fragment color
SmOutputParam1f fpdz; // fragment depth
SmOutputParam2us fpdxy; // fragment 2D position

// compute texture coordinates
SmRegTexCoord1f u = (x|ax) + turbulence(pnm alpha,x);
// compute diffuse and specular colors
SmRegColor3f kd = pnm cd[u];
SmRegColor3f ks = pnm cs[u];
// compute Blinn-Phong lighting model
fc += kd;
fc += ks * pow((normalize(hv)|normalize(nv)),phong exp);
// multiply by irradiance
fc *= ec;
// pass through fragment depth and position
fpdz = pdz;
fpdxy = pdxy;

} SmEndShader();

SMASH Metaprogramming Shader API 7–12

Acknowledgements
This research was funded by grants from the National Science and Engineering Research
Council of Canada (NSERC), the Centre for Information Technology of Ontario (CITO), the
Canadian Foundation for Innovation (CFI), the Ontario Innovation Trust (OIT), and finally the
Bell University Labs initiative.

References
[1] John Amanatides. Algorithms for the detection and elimination of specular aliasing. In

Proc. Graphics Interface, pages 86–93, May 1992.

[2] B. Guenter, T. Knoblock, and E. Ruf. Specializing shaders. In Proc. ACM SIGGRAPH,
pages 343–350, August 1995.

[3] John C. Hart, Nate Carr, Masaki Kameya, Stephen A. Tibbitts, and Terrance J. Coleman.
Antialiased parameterized solid texturing simplified for consumer-level hardware imple-
mentation. In 1999 SIGGRAPH / Eurographics Workshop on Graphics Hardware, pages
45–53. ACM Press, August 1999. Held in Los Angeles, California.

[4] M. D. McCool, J. Ang, and A. Ahmad. Homomorphic factorization of brdfs for high-
performance rendering. In Proc. SIGGRAPH, pages 171–178, August 2001.

[5] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive multi-pass
programmable shading. In Proc. SIGGRAPH, pages 425–432, July 2000.

[6] Ken Perlin. An image synthesizer. In Proc. SIGGRAPH, pages 287–296, July 1985.

[7] K. Proudfoot, W. R. Mark, P. Hanrahan, and S. Tzvetkov. A real-time procedural shading
system for programmable graphics hardware. In Proc. ACM SIGGRAPH, August 2001.

	ch07.pdf
	Introduction
	Metaprogramming Parser
	Testbed
	Parameter Binding
	Modified Phong Lighting Model
	Vertex Shader
	Fragment Shader

	Separable BRDFs and Material Mapping
	Vertex Shader
	Fragment Shader

	Marble and Wood
	Vertex Shader
	Fragment Shader

